帳號:guest(18.118.186.100)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉信成
作者(外文):Liu, Hsin-Chen
論文名稱(中文):化學氣相沉積法成長大面積單層二維材料與其電子特性研究
論文名稱(外文):CVD Growth of Large-Area Monolayer Transition Metal Dichalcogenides and its Electronic Device Properties
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):張文豪
李奎毅
口試委員(外文):Chang, Wen-Hao
Lee, Kuei-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063570
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:85
中文關鍵詞:化學氣相沉積法大面積二維材料
外文關鍵詞:CVDLarge-AreaTMDC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:825
  • 評分評分:*****
  • 下載下載:40
  • 收藏收藏:0
過渡金屬二硫屬化物(Transition metal dichalcogenide, TMDC)在這幾年被大量的研究,在數位元件、類比元件、微波元件、光電元件、可撓式元件等應用方面皆有不錯的表現,而大面積的成長正是上述所有應用的基本。雖然目前化學氣相沉積法已經可以成長大面積TMDC薄膜,但這些薄膜大多是由不同晶格方向的單晶所組成,為多晶的薄膜,於單晶與單晶的交界處便會有許多的晶界(Boundary),在電性傳導中影響甚鉅。故我們藉由加入氯化鈉作為催化劑一起成長,期望能長出大小超過50 μm的單晶二硒化鎢(WSe2)。另一方面,我們亦使用對前驅物(Precursor)更精準控制的金屬有機化學氣相沉積法(Metal organic chemical vapor deposition, MOCVD),期望能長出缺陷更少的二硫化鉬(MoS2)薄膜。最後,由於近幾年電子束相關的檢測儀器被大量的研究及使用,發現了高能電子束在與材料交互作用後會讓材料有著不一樣的特性,我們便針對電子束對二硒化鎢材料的影響作分析,以期能在不外加任何摻雜下做出p-type和n-type的元件。
Transition metal dichalcogenide, TMDC, has been researched in recent years and got great progress in digit、analogy、microwave、optical、flexible devices, and large-area growth is the basis of all above. While CVD can grow large-area films now, but they are polycrystalline films with many boundaries, and these boundaries affect carrier transport a lot. In this thesis, we introduce NaCl as catalysts successfully enlarge single crystal WSe2 to exceeding 50 μm. In the other hand, we use MOCVD to precisely control precursor flow and expecting to grow less-defect, large-area monolayer MoS2 film. In the end, due to electron beam related instruments have been used in many research, and some papers have revealed that high energy electron beam will interact with samples. So, we do some analysis about how electron beam lithography system affect single crystal WSe2.
論文摘要............................................I
Abstract..........................................III
目錄...............................................VII
第一章 緒論.........................................1
1.1 半導體元件之發展與局限...........................1
1.2 二維材料介紹.....................................2
1.3 二維材料製備方式.................................3
1.4 論文結構........................................5
第二章 過渡金屬二硫屬化物之基本特性....................7
2.2 過渡金屬二硫屬化物之晶體結構......................7
2.3 二硒化鎢與二硫化鉬之電子能帶......................9
2.4 二硒化鎢與二硫化鉬之聲子能帶.....................11
第三章 化學氣相沉積與材料檢測........................13
3.1 化學氣相沉積原理................................13
3.1.1 薄膜沉積.....................................13
3.1.2 化學氣相沉積反應機制..........................14
3.2 二維材料檢測....................................19
3.2.1 拉曼散射光譜..................................19
3.2.2 光致螢光光譜..................................21
3.2.3 X射線光電子能譜學.............................22
3.2.4 原子力顯微鏡..................................24
3.2.5 穿透式電子顯微鏡..............................26
第四章 低壓化學氣相沉積法成長單晶二硒化鎢.............29
4.1 實驗設備與流程..................................29
4.2 成長參數調變結果................................30
4.2.1 未使用氯化鈉催化劑成長.........................30
4.2.2 使用氯化鈉催化劑成長...........................36
4.3 材料檢測與分析..................................44
4.3.1 拉曼散射頻譜..................................44
4.3.2 光致螢光光譜..................................46
4.3.3 原子力顯微鏡..................................48
4.3.4 穿透式電子顯微鏡..............................49
第五章 金屬有機化學氣相沉積法成長大面積二硫化鉬薄膜....51
5.1 實驗設備與流程..................................51
5.2 成長參數調變結果................................53
5.2.1 單通道管線及未使用氯化鈉催化劑成長..............54
5.2.2 雙通道管線設計及使用氯化鈉催化劑成長............57
5.3 材料檢測與分析..................................60
5.3.1 拉曼散射頻譜..................................61
5.3.2 光致螢光光譜..................................63
5.3.3 原子力顯微鏡..................................64
5.3.4 X射線光電子能譜...............................65
5.3.5 穿透式電子顯微鏡..............................67
第六章 二硒化鎢電子特性結果分析.......................69
6.1 拉曼頻譜分析....................................69
6.2 光致螢光光譜分析................................71
6.3 電性量測與分析..................................73
第七章 結論與未來展望................................77
參考文獻............................................79
[1] J. Bardeen and W. H. Brattain. The Transistor, A Semi-Conductor Triode. Phys. Rev., 74:230–231, Jul 1948.
[2] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 8(2):1102–1120, 2014.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696):666–669, 2004.
[4] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim. Two-Dimensional Atomic Crystals. PNAS, 102(30):10451–10453, 2005.
[5] K. K. Liu, W. J. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Y. Su, C. S. Chang, H. Li, Y. M. Shi, H. Zhang, C. S. Lai, and L. J. Li. Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates. Nano Lett., 12(3):1538–1544, 2012.
[6] J. Pütz and M. A. Aegerter. MoSx Thin Films by Thermolysis of a Single-Source Precursor. J. Sol-Gel Sci. and Technol., 19(1):821–824, Dec 2000.
[7] Y. L. Feng, K. L. Zhang, F. Wang, Z. W. Liu, M. X. Fang, R. R. Cao, Y. P. Miao, Z. C. Yang, W. Mi, Y. M. Han, Z. T. Song, and H. S. P. Wong. Synthesis of Large-Area Highly Crystalline Monolayer Molybdenum Disulfide with Tunable Grain Size in a H2 Atmosphere. ACS App. Mater. & Inter, 7(40): 22587–22593, 2015.
[8] J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, and L. J. Li. Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano, 8(1): 923–930, 2014.
[9] Y. J. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou. Large-Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate. Small, 8(7):966–971, 2012.
[10] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat Chem, 5(4):263–275, April 2013.
[11] J. H. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee. Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors. Phys. Rev. X, 4:031005, Jul 2014.
[12] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat Nanotech, 7(11):699–712, November 2012.
[13] Y. Ding, Y. L. Wang, J. Ni, L. Shi, S. Q. Shi, and W. H. Tang. First Principles Study of Structural, Vibrational and Electronic Properties of Graphene-Like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) Monolayers. Physica B: Condensed Matter, 406(11):2254 – 2260, 2011.
[14] F.A. Lévy. Intercalated Layered Materials. D. Reidel Publishing Company, 1979.
[15] A. R. Beal, H. P. Hughes, and W. Y. Liang. The Reflectivity Spectra of Some Group VA Transition Metal Dichalcogenides. J. Phy. C: Solid State Phys., 8(24):4236, 1975.
[16] L. F. Mattheiss. Energy Bands for 2H-NbSe2 and 2H-MoS2. Phys. Rev. Lett., 30:784–787, Apr 1973.
[17] K. K. Kam and B. A. Parkinson. Detailed Photocurrent Spectroscopy of the Semiconducting Group VI Transition Metal Dichalcogenides. J. Phys. Chem., 1982.
[18] Th. Finteis, M. Hengsberger, Th. Straub, K. Fauth, R. Claessen, P. Auer, P. Steiner, S. Hüfner, P. Blaha, M. Vögt, M. Lux-Steiner, and E. Bucher. Occupied and Unoccupied Electronic Band Structure of WSe2. Phys. Rev. B, 55:10400–10411, Apr 1997.
[19] W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee. Thickness and Strain Effects on Electronic Structures of Transition Metal Dichalcogenides: 2H-MX2 Semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B, 85:033305, Jan 2012.
[20] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996.
[21] A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann. Electronic Band Structure of Single-Crystal and Single-Layer WS2 Influence of Interlayer van der Waals Interactions. Phys. Rev. B, 64:205416, Nov 2001.
[22] C. G. Lee, H. G. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. M. Ryu. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 4(5): 2695–2700, 2010.
[23] A. Molina-Sánchez and L. Wirtz. Phonons in Single-Layer and Few-Layer MoS2 and WS2. Phys. Rev. B, 84:155413, Oct 2011.
[24] P.B. Griffin J. D. Plummer, M. M. Deal. Silicon VLSI Technology. Prentice Hall, 2000.
[25] X. Luo, Y. Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. H. Xiong, and S. Y. Quek. Effects of Lower Symmetry and Dimensionality on Raman Spectra in Two- Dimensional WSe2. Phys. Rev. B, 88:195313, Nov 2013.
[26] S. S. Zumdahl; D. J. Decoste. Chemical Principles. Cengage Learning, 2012.
[27] Y. Zhang, Y. F. Zhang, Q. Q. Ji, J. Ju, H. T. Yuan, J. P. Shi, T. Gao andD. L. Ma, M. X. Liu, Y. B. Chen, X. J. Song, H. Y. Hwang, Y. Cui, and Z. F. Liu. Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, 7(10):8963–8971, 2013.
[28] C. Lofton and W. Sigmund. Mechanisms Controlling Crystal Habits of Gold and Silver Colloids. Adv. Funct. Mater., 15(7):1197–1208, 2005.
[29] M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin. Defining Rules for the Shape Evolution of Gold Nanoparticles. JACS, 134(35):14542–14554, 2012.
[30] W. Y. Wu, S. Chakrabortty, C. K. L. Chang, A. Guchhait, M. Lin, and Y. T. Chan. Promoting 2D Growth in Colloidal Transition Metal Sulfide Semiconductor Nanostructures via Halide Ions. Chem. of Mater., 26(21):6120–6126, 2014.
[31] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. M. de Vasconcellos, and R. Bratschitsch. Photoluminescence Emission and Raman Response of Monolayer MoS2, MoSe2, and WSe2. Opt. Express, 21(4):4908–4916, Feb 2013.
[32] W. J. Zhao, R. M. Ribeiro, M. L. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda. Origin of Indirect Optical Transitions in Few-Layer MoS2, WS2, and WSe2. Nano Lett., 13(11):5627–5634, 2013.
[33] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters. Anomalous Raman Spectra and Thickness-Dependent Electronic Properties of WSe2. Phys. Rev. B, 87:165409, Apr 2013.
[34] N. Peimyoo, J. Z. Shang, C. X. Cong, X. N. Shen, X. Y. Wu, E. K. L. Yeow, and T. Yu. Nonblinking, Intense Two-Dimensional Light Emitter: Monolayer WS2 Triangles. ACS Nano, 7(12):10985–10994, 2013.
[35] X. L. Wang, Y. J. Gong, G. Shi, W. L. Chow, K. Keyshar, G. L. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe, B. K. Tay, and P. M. Ajayan. Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2. ACS Nano, 8(5):5125–5131, 2014.
[36] X. Ling, Y. H. Lee, Y. X. Lin, W. J. Fang, L. L. Yu, M. S. Dresselhaus, and J. Kong. Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Lett., 14(2):464–472, 2014.
[37] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey. High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Lett., 12(7):3788–3792, 2012.
[38] W. Liu, J. H. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee. Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe2 Field Effect Transistors. Nano Lett., 13(5):1983–1990, 2013.
[39] H.. Terrones, E. Del Corro, S. Feng, J. M. Poumirol, D. Rhodes, D. Smirnov, N. R. Pradhan, Z. Lin, M. A. T. Nguyen, A. L. Elías, T. E. Mallouk, L. Balicas, M. A. Pimenta, and M. Terrones. New First Order Raman-Active Modes in Few Layered Transition Metal Dichalcogenides, 2014.
[40] K. B. Kang, Saien Xie, L. J. Huang, Y. M. Han, Pinshane Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. W. Park. High-Mobility Three-Atom-Thick Semiconducting Films With Wafer-Scale Homogeneity. Nature, 520(7549): 656–660, April 2015.
[41] B. J. Mrstik, R. Kaplan, T. L. Reinecke, M. Van Hove, and S. Y. Tong. Surface-Structure Determination of the Layered Compounds MoS2 and NbSe2 by Low-Energy Electron Diffraction. Phys. Rev. B, 15:897–900, Jan 1977.
[42] J. G. Kim, W. S. Yun, S. H. Jo, J. D. Lee, and C. H. Cho. Effect of Interlayer Interactions on Exciton Luminescence in Atomic-Layered MoS2 Crystals. Scientific Reports, 6:29813, July 2016.
[43] K. F. Mak, C. G. Lee, J. Hone, J. Shan, and T. F. Heinz. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett., 105:136805, Sep 2010.
[44] J. U. Lee, K. W. Kim, and H. Cheong. Resonant Raman and Photoluminescence Spectra of Suspended Molybdenum Disulfide. 2D Materials, 2(4): 044003, 2015.
[45] X. Q. Xiong, W. Luo, X. H. Hu, C. J. Chen, L. Qie, D. F. Hou, and Y. H. Huang. Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-Ion Batteries. Scinetific Reports, 5:9254, March 2015.
[46] L. L. Wang, C. Guo, Y. C. Zhu, J. B. Zhou, L. Fan, and Y. T. Qian. A FeCl2-Graphite Sandwich Composite with Cl Doping in Graphite Layers: A New Anode Material for High-Performance Li-Ion Batteries. Nanoscale, 6:1417414179, 2014.
[47] J. Kotakoski, C. H. Jin, O. Lehtinen, K. Suenaga, and A. V. Krasheninnikov. Electron Knock-On Damage in Hexagonal Boron Nitride Monolayers. Phys. Rev. B, 82:113404, Sep 2010.
[48] J. Kotakoski, D. Santos-Cottin, and A. V. Krasheninnikov. Stability of Graphene Edges under Electron Beam: Equilibrium Energetics versus Dynamic Effects. ACS Nano, 6(1):671–676, 2012.
[49] H. P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V. Krasheninnikov. Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Phys. Rev. Lett., 109:035503, Jul 2012.
[50] D. H. Kang, J. W. Shim, S. K. Jang, J. H. Jeon, M. H. Jeon, G. Y. Yeom, W. S. Jung, Y. H. Jang, S. J. Lee, and J. H. Park. Controllable Nondegenerate p-Type Doping of Tungsten Diselenide by Octadecyltrichlorosilane. ACS Nano, 9(2): 1099–1107, 2015.
[51] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single Layer MoS2 Transistors. Nat Nanotech, 6(3):147–150, March 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *