帳號:guest(3.133.157.142)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭緯昌
作者(外文):Hsiao, Wei-Chang
論文名稱(中文):垂直式有機電晶體微影製程之電流密度改善探討
論文名稱(外文):A discussion of enhancing current density in vertical organic transistor using lithography
指導教授(中文):洪勝富
指導教授(外文):Horng, Sheng-Fu
口試委員(中文):孟心飛
趙宇強
口試委員(外文):Meng, Hsin-Fei
Chao, Yu-Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063565
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:51
中文關鍵詞:垂直式有機電晶體微影製程電流密度空間電荷限制電晶體
外文關鍵詞:SCLTlithographyvertical organic transistorcurrent density
相關次數:
  • 推薦推薦:0
  • 點閱點閱:580
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文著重於有機垂直式電晶體(SCLT)微影製程元件之電性,並且討論其改善元件電流密度方式。可以分成三個部分。
第一部分,以往微影之標準元件均是以掀離法方式得到結構,然而掀離法製程之元件其工作時電流密度遠不如標準元件,為了了解使用掀離法所製作出之元件其電流密度低落的可能原因,我們依序分析製程上可能造成元件電流低落的步驟。
第二部分,藉由第一部分所提出的問題逐一進行改善,藉由將掀離法製程更改成蝕刻法製程的方式,成功地使P3HT犧牲層能夠應用於微影製程上,改善金屬網格結構,使整體電流密度大幅提升。
第三部分,為了顯示器之規格尺度,SCLT元件則必須縮小至微米等級的尺度,藉由前兩部分的微影製程,我們成功地在3cm x 4cm之玻璃基板上製作出主動區大小80µmx 80µm之SCLT。
This thesis is the study of the characteristic of vertical organic transistor processed by lithography, and the discussion of a method to enhance the device's current density.
The thesis is divided into the following three parts:

Part I, we obtain the standard device of lithograghy by lift-off however ,the operating current density of device by lift-off is much lower than standard device, so we analyze the standard lift-off production process and find the problems that result in the low current density.

Part II, by solving the problems found in Part I, we change lift-off to etching, and successfully apply P3HT sacrifice layer into lithography which improves the metal mesh structure, and enhance the current density eventually.

Part III, with Part I and Part II, we successfully miniature SCLT into the active area of 80 um X 80 um on a 3cm X 4cm glass substracte to fit the scale of display.

國立清華大學 I
垂直式有機電晶體微影製程之電流密度改善探討 III
Abstate IV
目錄 V
圖目錄 VIII
Chapter 1緒論 1
1-1研究背景 1
1-2研究動機 2
1-3論文架構 3
Chapter 2 有機材料簡介與元件操作原理 4
2-1 有機材料簡介 4
2-1.1 有機共軛高分子材料 4
2-1.2有機絕緣層材料 7
2-2金屬與半導體接面 8
2-3注入限制電流 10
2-4載子傳輸理論 (空間電荷限制理論) 11
2-5固態真空管原理 14
2-6空間電荷限制電晶體結構與操作原理 14
Chapter 3 有機垂直式電晶體相關製程 17
3-1 有機薄膜塗佈製程 17
3-1.1 旋轉塗佈 17
3-1.2 刮刀塗佈 18
3-2 有機溶液配製方式 19
3-2.1 有機絕緣層溶液製備 19
3-2.2 有機傳輸層溶液製備 20
3-2.3 聚苯乙烯奈米球溶液製備 20
3-3空間電荷限制電晶體(SCLT)標準製程 20
3-3.1 下電極製程與有機絕緣層 20
3-3.2 奈米金屬網格與柱狀結構 21
3-3.3 有機通道主動層及上電極 23
3-4微影製程 24
3-4.1 掀離法(Lift Off)微影製程[14] 24
3-4.2 蝕刻法微影製程 25
Capter 4 空間電荷限制電晶體微影製程 27
4-1 SCLT標準元件微影製程 27
4-1.1. 元件下電極(Collector) 27
4-1.2. 金屬網格基極(base)及柱狀結構 28
4-1.3. 有機通道主動層與上電極(emitter) 28
4-2 SCLT標準元件微影製程結果與討論 29
Capter 5空間電荷限制電晶體微影製程之電流密度探討及改善 31
5-1 濕式蝕刻液之選擇 31
5-1.1下電極鋁蝕刻液挑選 31
5-1.2金屬網格結構蝕刻液挑選 33
5-2下電極之蝕刻法微影製程 34
5-2.1 實驗製程 35
5-2.1 實驗結果與討論 36
5-3金屬網格基極之蝕刻法微影製程 36
5-3.1 實驗製程 37
5-3.2 實驗結果與討論 40
5-4 空間電荷限制電晶體 80µm x 80µm 面積製程 42
5-4.1掀離法微影製程 42
5-4.2 蝕刻法微影製程 44
5-4.3 實驗結果與討論 45
Chapter 6 總結與未來展望 47
Chapter 7 參考文獻 49

[1]“Polymer space-charge-limited transistor”, Yu-Chiang Chao, Hsin-Fei Meng, and Sheng-Fu Horng, Appl. Phys. Lett., 88, 223510 (2006)
[2] “High performance solution-processed polymer space-charge-limited transistor”, Yu-Chiang Chao, Hsin-Fei Meng, Sheng-Fu Horng, Chain-Shu Hsu, Organic Electronics, 9, 310-316 (2008)
[3] “Reduced hole injection barrier for achieving ultra-low voltage polymer space-charge-limited transistor with a high on/off current ratio”, Yu-Chiang Chao, Yi-Cheng Lin, Min-Zhi Dai, Hsiao-Wen Zan and Hsin-Fei Meng, Appl. Phys. Lett., 95, 203305 (2009)
[4]Y.-C.Chao,M.-C.Ku, W.-W.Tsai,H.-W. Zan,H.-F. Meng, H.-K. Tsai, and S.-F.Horng, “polymer space -charge-limited transistor as a solid-state vacuum tube triode”,Appl. Phys. Lett.,vol.97,no.22,p.223307,(2010).
[5]“Enhancement-mode Polymer space-charge-limited transistor with low switching swing of 96 mV/decade”, Yu-Chiang Chao, Hung-Huo Tsai, Hsiao-Wen Zan, Yung-Hsuan Hsu, Hsin-Fei Meng and Sheng-Fu Horng , Appl. Phys. Lett., 98, 153506 (2011)
[6]“High output current in vertical polymer space-charge-limited transistor induced by self-assembled monolayer”, Hsiao-Wen Zan, Yuan-Hsuan Hsu, Hsin-Fei Meng, Chian-Hao Huang, Yu-Tai Tao, and Wu-Wei Tsai, Appl. Phys. Lett., 101, 093307 (2012) APL-Organic Electronics and Photonics as featured science highlight
[7] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W.
Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D.
M. de Leeuw, Nature 401, 685 (1999).
[8] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, and E. W. Meijer, Synthetic Met.
111, 129 (2000).
[9] M. Aryal, K. Trivedi, and W. C. Hu,” Nano-Confinement Induced Chain Alignment in Ordered P3HT Nanostructures Defined by Nanoimprint Lithography” Acs Nano 3, 3085 (2009).
[10] H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M.Grell, and D. D. C. Bradley,” Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase” Appl. Phys. Lett. 77, 406 (2000).
[11] G. Gustafsson, O. Inganas, and S. Stafstrom, Solid State Commun. 76, 203 (1990).
[12] “High-performance vertical polymer nanorod transistors based on air-stable conjugated polymer”, Yu-Chiang Chao, Chin-Ho Chung, Hsiao-Wen Zan, , Hsin-Fei Meng, , and Ming-Che Ku, Appl. Phys. Lett. 99, 233308 (2011)
[13]” Large-area non-close-packed nanosphere deposition by blade coating for vertical space-charge-limited transistor”, Yen-Chu Chao,Kai-Ruei Wang, Hsin-Fei Meng,Hsiao-Wen Zan,Yung-Hsuan Hsu, Organic Electronics 13 (2012) 3177–3182
[14]李成方,垂直式有機電晶體陣列之設計與製程,國立交通大學,碩士論文,105年
[15]” Ionization potential dependent air exposure effect on the MoO3/organic interface energy level alignment”, Jian Qiang Zhong, Hong Ying Mao, Rui Wang
, Jia Dan Lin, Yong Biao Zhao, Jia Lin Zhang, Dong Ge Ma,Wei Chen, Organic Electronics 13 (2012) 2793–2800.
[16]“An analysis of evaporative self-assembly of micro particles in printed picoliter suspension droplets”, Sun Choi, Albert P.Pisano, Tarek I. Zohdi, Thin Solid Films 537 (2013) 180–189
[17] “Terahertz wire-grid polarizer by nanoimprinting lithography on high resistivity silicon substrate”, L. Zhang;J. H. Teng ;H. Tanoto ;S. Y. Yew ;L. Y. Deng ;S. J. Chua, IEEE Xplore: 28 October 2010
[18] “Quantification of Aluminum Outward Diffusion During Oxidation of FeCrAl Alloys”, J. A. Nychka and D. R. Clarke”, Oxidation of Metals, Vol. 63, Nos. 5/6, June 2005 (© 2005)

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *