帳號:guest(18.190.217.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):龍旻威
作者(外文):Lung, Ming-Wei
論文名稱(中文):液體環境下操作之CMOS電容式震盪器
論文名稱(外文):CMOS Capacitive Oscillators Operating in Liquids
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-Cheng
口試委員(中文):劉承賢
傅建中
口試委員(外文):Liu, Cheng Xian
Fu, Jian Zhong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063563
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:56
中文關鍵詞:黏度薄膜擠壓效應
外文關鍵詞:viscositysqueeze film effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:326
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
本論文之目的為探討擠壓薄膜效應在液體環境下的影響,並以共振頻率的變化測量液體黏度的變化。預期在液體環境下,利用兩平行板電極,經由提供電極電壓產生靜電吸引力,造成平板間的距離造成變化並造成電容變化,再藉由感測電路將電容變化轉為電壓變化並輸出,並且將感測結構及感測電路整合在同一晶片上,藉由觀察電容變化的頻率估算液體黏度的改變,電容式感測在過去的研究中,主要受限於感測結果容易被直接從驅動電極通過液體的驅動訊號影響,使原本在液體中震動位移已經降低許多的機械結構更不易感測出位移的電訊號,本篇使用調制的方式將機械結構訊號與驅動訊號分離,便能解決此問題。
本論文使用TSMC 2-polysilicon 4-metal 0.35-μm CMOS製程,並使用濕蝕刻將結構釋放,最後使用活性離子蝕刻將電路所需接點的金屬露出。整顆晶片大小為2.8 mm × 2.8 mm。量測部分可量測出機械結構在大氣壓下的共振頻率,也驗證了感測電路的正常功能,但是礙於由基板耦合訊號的影響,無法利用電路量測出結構的共振頻,未來仍須改善。
The purpose of this paper is to investigate the effect of the squeeze film damping effect in the liquid environment. Liquid viscosity studied by the change of resonance frequency. It is expected that in a liquid environment, by using two parallel plate electrodes, an electrostatic attraction force generated by supplying driving voltage to the electrodes, causes a change in the distance between the plates and a change in capacitance. Then the capacitance change is converted into a voltage change in the sensing circuit. The sensing structure and the sensing circuit are integrated on the same chip. Viscosity of the liquid is estimated by observing the resonant frequency changed by capacitive detection. In the past research, the capacitive sensing is mainly limited by the fact that the sensing result is easy to couple directly from the driving. The sensed signal is reduced in liquid. This study uses the modulation method to separate the sensed signal from the driving signal to solve this problem.
This paper uses TSMC 2-polysilicon 4-metal 0.35-μm CMOS process, and uses wet metal etch to release the structures. Reactive ion etch is used to expose the bond pads. The entire chip size is 2.8 mm × 2.8 mm. Resonance frequencies of the mechanical structures under atmospheric pressure are measured by optical instrument. Capacitive measurement of resonance frequency was hampered because of the influence of substrate coupling effect, which needs to be improved in the future.
摘要 I
Abstract II
致謝 III
目錄 IV
第一章 緒論 1
1-1前言 1
1-2研究動機 4
1-3文獻回顧 5
1-4論文架構 6
第二章 感測器設計與分析 8
2-1擠壓薄膜效應介紹 8
2-2 薄膜擠壓效應理論 9
2-3 感測結構設計與模擬 14
2-4 後製程設計 20
2-5 電容式感測與設計 23
2-6 臨界電壓 25
2-7 電路介紹與設計 27
第三章 量測 36
3-1 製程量測 36
3-2 結構振頻LDV量測 37
3-3 電路量測 42
3-4 結構共振頻率量測 45
第四章 結論與未來 50
4-1 研究成果與討論 50
4-2 未來工作 51
第五章 參考文獻 52

[1] J. M. Bustillo, R. T. Howe, and R. S. Muller, "Surface micromachining for microelectromechanical systems," Proc. IEEE, vol. 86, pp.1552-1574, August, 1998.
[2] Y. Yamamoto, S. Matsumoto, H. Yabuno, M. Kuroda, T. Yamamoto and S. Choi, “VISCO-MEMS: The MEMS-based viscosity sensor using dual spiral vibrating beams,” Transducers 2013, pp.94-97, June, 2013.
[3] F. Restagno, J. Crassous, E. Charlaix and M. Monchanin, “A new capacitive sensor for displacement measurement in a surface-force apparatus,” Measurement Science and Technology, vol. 12, pp.16-22, November, 2000.
[4] C Riesch, E K Reichel, A Jachimowicz, J Schalko, P Hudek, B Jakoby and F Keplinger, “A suspended plate viscosity sensor featuring in-plane vibration and piezoresistive readout,” Journal of Micromechanics and Microengineering, vol.19, 075010, June, 2009.
[5] R. Thalhammer, S. Braun, B. Devcic-Kuhar, M. Groschl, F. Trampler, E. Benes, H.Nowotny, P. Kostal, “Viscosity sensor utilizing a piezoelectric thickness shear sandwich resonator,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 45, pp.1331-1340, September, 1998.
[6] W. Shin, M. Nishibori, K. Tajima, L. Houlet, Y. Choi, N. Izu, N. Murayama, I. Matsubara, “Integration of ceramic catalyst on micro-thermoelectric gas sensor,” Sensors and Actuators B, vol. 118, pp.283-291, October, 2006.
[7] B. Ilic, D. Czaplewski, H. G. Craighead, P. Neuzil, C. Campagnolo, and C. Batt, “Mechanical resonant immunospecific biological detector,” Applied Physics Letters, vol. 77, pp.450-452, July, 2000.
[8] A. Bongrain, C. Agnès, L. Rousseau, E. Scorsone, J. C. Arnault, S. Ruffinatto, F. Omnès, P. Mailley, G. Lissorgues, and P. Bergonzo, “High sensitivity of diamond resonant microcantilevers for direct detection in liquids as probed by molecular electrostatic surface interactions,” Langmuir, vol. 27, pp.12226- 12234, August, 2011.
[9] G. Muralidharan, A. Wig, L.A. Pinnaduwage, D. Hedden, T. Thundat, R. T. Lareau, “Adsorption–desorption characteristics of explosive vapors investigated with microcantilevers,” Ultramicroscopy, vol. 97, pp.433-439, October–November, 2003.
[10] K. M. Goeders, J. S. Colton, and L. A. Bottomley, “Microcantilevers: sensing chemical interactions via mechanical motion,” Chemical Reviews, vol. 108, pp.522-542, January, 2008.
[11] J. Toledo, V. Ruiz-Diez, J. L. Sanchez-Rojas, “Wine fermentation sensor based on piezoelectric resonators,” Sensors, 2017 IEEE.
[12] T. Manzaneque , V. Ruiz-Díez , J. Hernando-García, “Density-viscosity sensor based on piezoelectric MEMS resonator and oscillator circuit,” Sensors, 2014 IEEE.
[13] R.M. Lec , X.J. Zhang, and J.M.Hammond, “A remote acoustic engine oil quality sensor,” IEEE Ultrasonics Symposium, vol. 1, pp.419-422, October, 1997.
[14] B. Jakoby, M. Scherer, M. Buskies, H. Eisenschmid, “Microacoustic viscosity sensor for automotive applications,” IEEE Sensors, vol. 2, pp.1587-1590, 2002.
[15] S. J. Martin, V. E. Granstaff, and G. C. Frye, “Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading,” Analytical Chemistry, vol. 63, pp.2272-2281, October, 1991.

[16] K. K. Kanazawa and J. G. Gordon II, “The oscillation frequency of a quartz resonator in contact with a liquid,” Analytica Chimica Acta, vol. 175, pp.99- 105, June, 1985.
[17] S. J. Martin, R. W. Cernosek, and J. J. Spates , “Sensing Liquid Properties with Shear-Mode Resonator Sensors,” Transducers '95 Eurosensors IX, pp.712-715, June, 1995.
[18] O. Cakmak, E. Ermek, N. Kilinc, G.G. Yaralioglu, H. Urey, “Precision density and viscosity measurement using two cantilevers with different widths,” Sensors and Actuators A, vol. 232, pp.141–147, 2015.
[19] O. Cakmak, C. Elbuken, E. Ermek, A. Mostafazadeh, I. Baris, B. Erdem Alaca, I.H. Kavakli, and H. Urey, "Microcantilever based disposable viscosity sensor for serum and blood plasma measurements," Methods, vol. 63, pp.225–232, 2013.
[20] G. Eris, A.A. Bozkurt, A. Sunol, A. Jonásˇ, A. Kiraz, B.E. Alaca, and C. Erkey, "Determination of viscosity and density of fluids using frequency response of microcantilevers," Journal of Supercritical Fluids, vol. 105, pp. 179–185, 2015.
[21] M. Youssry, N. Belmiloud, B. Caillard, C. Ayela, C. Pellet, and I. Dufour, "A straightforward determination of fluid viscosity and density using microcantilevers : From experimental data to analytical expressions," Sensors and Actuators A, vol. 172, pp. 40-46, 2011.
[22] A. Agoston, F. Keplinger, and B. Jakoby, "Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids," Sensors and Actuators A, vol. 123–124, pp.82–86, 2005.
[23] C. H. Chiang, M. C. Chou, P. H. Hsieh and Michael S.-C. Lu, Member, ” Design and characterization of a CMOS MEMS capacitive oscillator for resonant sensing in liquids” IEEE Sensors Journal, vol. 16, pp.1136-1142, March, 2016.
[24] K. Rijal, and R. Mutharasan, "Piezoelectric-excited millimeter-sized cantilever sensors detect density differences of a few micrograms/mL in liquid medium," Sensors and Actuators B, vol. 124, pp.237–244, 2007.
[25] G.A. Campbell, and R. Mutharasan, "Sensing of liquid level at micron resolution using self-excited millimeter-sized PZT-cantilever," Sensors and Actuators A,
vol. 122, pp.326–334, 2005.
[26] I. Puchades, L. Fuller and S. Lyshevski “Analysis and stability of a silicon-based thermally actuated MEMS viscosity sensor” 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO).
[27] J. J. Blech, “On isothermal squeeze films,” Journal of Tribology, vol. 105, pp.615-620, November, 2009.
[28] M. Bao , H. Yang “Squeeze film damping in MEMS,” Sensors and Actuators A , vol.136, pp.3-27, 2007.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *