帳號:guest(52.15.48.189)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昶達
作者(外文):Chen, Chang-Ta
論文名稱(中文):平面式微型寬波段近紅外光光源元件設計與改善
論文名稱(外文):Design and Improvement of Planar Micro Broadband Near-Infrared Light Source
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):謝明勳
徐子傑
張永富
口試委員(外文):Hsieh, Ming-Hsiun
Hsu, Tzu-Chieh
Jang, Yung-Fu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063562
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:74
中文關鍵詞:鎢微燈絲黑體輻射矽微燈絲
外文關鍵詞:tungsten micro-filamentBlack body radiationsilicon micro-filament
相關次數:
  • 推薦推薦:0
  • 點閱點閱:154
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
白熾燈泡(鎢絲燈泡)是利用電流通過燈絲聚熱達到白熾狀態來發光,屬於電能轉光能的一種照明工具。但由於白熾燈泡在電能轉光能的過程中,大部分的發光波段落在紅外光區,在可見光照明部分白熾燈泡的發光效率相對較低。而近期全球環保意識的抬頭,因此傳統的白熾燈泡逐漸被省電、且壽命較長的LED所取代。在本次研究當中,我們將重心放在白熾燈泡主要的發光波段近紅外光區(900 nm-2500 nm),也就是白熾燈泡主要的發光區段。在紅外光波段的光源原件上,鎢絲燈不需要複雜的磊晶技術,可以省下製作的成本,其發光波段 相比於LED,能達到更寬廣的發光波段。
研究目標是製作出平面式的微型寬波段近紅外光光源,元件大小為1840 μm × 1840 μm。我們以黑體輻射的概念來做應用,分別研究利用金屬材料以及半導體材料的聚熱發光特性,並且經過後續各項製程來完成我們寬波段近紅外光光源的製作。在本論文中我們有兩種不同材料的燈源會一一來做介紹,分別是微型鎢絲燈以及微型矽燈絲。首先利用RF濺鍍機沉積鎢絲燈的金屬發光層,矽燈絲則是以Silicon on insulator (SOI) 的片子進行Induced Couple Plasma Etching (ICP) 蝕刻來定義我們元件的發光區,之後包括thermal coater沉積電極、Plasma Enhance Chemical Vapor Deposition (PECVD) 沉積包覆的絕緣層,最後使用化學氣體XeF2進行矽的等向性蝕刻,掏空底下的矽基板使燈絲形成懸浮結構來完成我們的元件製作。研究方向為確保各項製程能使我們的微型燈絲元件具有良好的聚熱特性,並增加我們元件的發光強度,操作壽命。之後我們在元件結構上進行延伸,像是近紅外光光源的正列結構,來為我們的元件設計增加更多多元性。元件完成後會放置於真空兩點探針座內進行數據的量測,用以了解元件的電特性、光特性以及操作電壓和壽命,並研究各項數據來做分析和比較。
Incandescent bulb, the tungsten filament, is the use of current through the filament getting heat to reach incandescence. It is a lighting tool which is belonging a conversion of electrical energy to heat and light energy. However, in the conversion step of incandescent lamp lighting, most of the lighting wavelength is locating in the infrared light band area. In the visible light part of the incandescent bulb luminous efficiently is relatively low. The rising awareness of the environmental consciousness, the traditional incandescent bulb is replaced by the LED lighting gradually which is save power and has the longer lifespan. In our research, we focus on the infrared light wavelength (900 nm to 2500 nm) which is the main emitting wavelength of the incandescent bulb [1]. To reach the goal that emitting the infrared light wavelength, compared to LED lighting, incandescent does not rely on the complex epitaxy technology, so it can save a lot of expense of production. The light emitting wavelength of incandescent is more broader than LED lighting.
In our research, we focus on the designing of the planar micro-filament emitting the broadband near-infrared light. The device size is 1840μm×1840μm. With the concept of blackbody radiation, the research is focused on the heat accumulation and lighting properties of different material. We will analysis two kinds of micro-filament, tungsten micro-filament and silicon micro-filament and we will introduce these separately. First, we deposit the light emitting layer of the tungsten micro-filament. For the silicon micro-filament, we do the Induced Couple Plasma Etching (ICP) process to etch our Silicon on insulator (SOI) wafer as the light emitting layer. Then we do the process included metal pad deposition, and oxide layer deposition by the PECVD. Finally, we etch the silicon substrate with the XeF2 to do the isotropic etching and form the suspension structure. Then we focus on the research of the improved structure such as array structure and make research more diversity. After we complete the production of the device, we use the vacuum probe system to do the measurement and data analysis such as the light and electronic properties, life time and latency of the micro-filament.
摘要 II
Abstract IV
致謝 VI
Content VII
List of Figure IX
List of Table XII
Chapter 1 Introduction 1
1-1Near-infrared Light Source Introduction 1
1-2Motivation and Application 3
Chapter2 Theoretical Basic 7
2-1 Black Body Radiation Law 7
2-2 Principle of the Micro-Filament Designing 14
2-3 Silicon on Insulator SOI 16
Chapter 3 Micro-Filament Experimental Procedure 18
3-1 Mask designing and device structure 18
3-2 Experiment process steps and experimental details 24
3-2-1 Tungsten Micro-Filament 24
3-2-2 Multiple Layers Structure 29
3-2-3 Silicon Micro-Filament 33
3-2-4 Array Structure 35
3-2-5 The straight line structure of the silicon micro-filament 36
3-3 Vacuum probe measurement system 38
Chapter 4 Experiment Result and Discussion 40
4-1 Micro-Filament device measurement 40
4-1-1 The deposition of tungsten 40
4-1-2 Anneal process of Micro-Filament 42
4-1-3 Suspension of Micro-Filament 44
4-1-4 I-V and spectrum characteristic measurement in vacuum system 47
4-1-5 Double layer Micro-Filament 50
4-2 The measurement of silicon Micro-Filament 52
4-2-1 I-V and spectrum characteristic analysis 52
4-2-2 The I-V curve of the device operated in different temperature 54
4-2-3 Lifetime of the silicon micro-filament 56
4-2-4 Latency of micro-filament measurement 60
4-3 Micro-Filament Array 64
4-4 The straight line structure of the silicon micro-filament 66
Chapter 5 Conclusion 71
Chapter 6 Reference 73

[1] MacIsaac, Dan, Gary Kanner, and Graydon Anderson. "Basic physics of the incandescent lamp (lightbulb)." The physics teacher 37.9 (1999): 520-525.
[2] Brian W Woodget, Royal Society of Chemistry, Chapter 11 – Spectroscopic
Techniques Based upon the Absorption or Emission of Electromagnetic Radiation for the Measurement of Molecular Species, https://hydra.hull.ac.uk/assets/hull:2479/content
[3] Strangman, Gary, David A. Boas, and Jeffrey P. Sutton. "Non-invasive neuroimaging using near-infrared light." Biological psychiatry 52.7 (2002): 679-693.
[4] Barone, Paul W., et al. "Near-infrared optical sensors based on single-walled carbon nanotubes." Nature materials 4.1 (2005): 86-92.
[5] Kälvesten, E., et al. "A SILICON IR-SOURCE AND C02-CHAMBER FOR C02 MEASUREMENTS." Microelectromech. Syst. (1998): 69-74.
[6] http://www.feedandgrain.com/product/da-7200-nir-diode-array-based-feed-analyzer
[7] https://en.wikipedia.org/wiki/Black-body_radiation
[8] Ranganath, G. S. "Black-body radiation." Resonance 13.2 (2008): 115-133.
[9] http://kiwiphysics.blogspot.tw/2015/01/blog-post_19.html
[10] Kishi, Naoki, and Hitoshi Hara. "Lifetime evaluation of self-modulated MEMS infrared light source made of single crystalline silicon." SICE, 2007 Annual Conference. IEEE, 2007.
[11] Carvalho, D. O., et al. "Integrated incandescent microlamp coupled to SiOxNy waveguide." SPIE MOEMS-MEMS: Micro-and Nanofabrication. International Society for Optics and Photonics, 2009.
[12] Tuma, Meg L., et al. "MEMS incandescent light source." International Symposium on Optical Science and Technology. International Society for Optics and Photonics, 2000.
[13] Bruel, M. "Silicon on insulator material technology." Electronics letters 31.14 (1995): 1201-1202.
[14] Tu, Juliana, et al. "Micromachined, silicon filament light source for spectrophotometric microsystems." Applied optics 42.13 (2003): 2388-2397.
[15] Liu, Yu-Chun, “Design and Fabrication of Near-Infrared Broadband Micro-Light Source,” nthu, 2014
[16] Hung, Kun-Rong, “Design and Fabrication of Micro Broadband Near-Infrared Light Source, ” nthu, 2015
[17] Lee, Kuan-Yi, “Fabrication and Improvement of Micro Broadband Near-Infrared Light Source, ” nthu, 2016
[18] Easter, Clayton, and Chad O’Neal. "XeF2 etching of silicon for the release of micro-cantilever based sensors." ASME 2008 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2008.
[19] Yoo, Kum-Pyo, and Nam-Ki Min. "Fabrication of thin-film thermopile micro-bridge with XeF 2 etching process." Thin solid films 516.11 (2008): 3586-3589.
[20] Fürjes, P., et al. "Thermal investigation of micro-filament heaters." Sensors and Actuators A: Physical 99.1 (2002): 98-103.
[21] Smith, Evan. "Vanadium Oxide Microbolometers with Patterned Gold Black or Plasmonic Resonant Absorbers." (2015).

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *