帳號:guest(3.133.158.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇秉國
作者(外文):Su, Ping-Kuo
論文名稱(中文):石墨烯異質接面電晶體的特性研究
論文名稱(外文):The Research of Graphene-Base Heterojunction Transistor
指導教授(中文):徐永珍
指導教授(外文):Hsu, Yung-Jane
口試委員(中文):張彌彰
黃智方
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063558
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:92
中文關鍵詞:石墨烯電晶體
外文關鍵詞:graphenetransistor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1223
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文是首篇,實現了以單層石墨烯作為電晶體基極的研究,且針對此異質接面電晶體的基本電性和照光後行為,做更深入的探討。由於石墨烯許多獨特的特性,像是高載子遷移率、二維狀態下可穩定存在還有可大規模的生產,讓他有潛力應用在高速的電子元件當中,近年來吸引了許多人投入石墨烯的研究。本篇論文希望能將石墨烯薄膜應用於電晶體(transistor)的基極端,單層至數層的石墨烯薄膜可以形成非常薄的基極厚度,我們預期會有較低的載子複合率,期望製作出一個具有高共射極電流增益(common-emitter current gain)的元件。且較薄的基極厚度,可降低基極端的串聯電阻,提升元件的操縱速度。目前已經有些相關的論文對這樣的架構進行模擬,並得到一些不錯的結果,但尚未有人將它實現。本篇論文致力於將此概念的電晶體實現,且對原先提出的架構加以修正以符合我們能夠取得的製程方式。
經由Gummel Plot量測,我們得到此電晶體最大的共射極電流增益(common-emitter current gain)可以達到104左右,量測到的共基極電流增益(common-base current gain)可以非常的接近1,而透過理論推導整理的基極區傳輸因數(base transport factor)也可以達到0.9左右,和目前現有的石墨烯熱載子電晶體(graphene base hot electron transisitor)相比可以說有非常大的進步[ 10 ]。另一方面,我們會探討將此石墨烯電晶體作為光偵測電晶體的表現。在波長520nm,照光功率為1.25uW的情況下,此電晶體的電流響應度最高可以達到2.24A/W,電壓響應度最高可以達到1.36x105V/W。現有的石墨烯二極體,電流響應度在波長488nm,照光功率為1.23uW的情況下為0.225A/W,電壓響應度則是大約為4x104V/W[ 19 ]。以照光後的響應度來看,本論文所完成的石墨烯電晶體,和石墨烯二極體相比,整體的表現都有不錯的提升。
This thesis is the first research which implements the concept of using single layer graphene as base terminal of a transistor and discusses the electrical and optical properties of this novel device. Graphene has attracted lots of interests due to its unique properties such as high mobility, 2-D structure and large scale production. These characteristics make it attractive for high-speed electronic devices. Our study here is planning to utilize graphene film as the base material in a transistor. Due to the thin graphene layer (single layer to few layers), we expect it to have very little recombination in the base, which can contribute a large current gain and also minimize the series resistance to enable high speed operations. There were some papers studying the simulation of this kind of devices, but no one has implemented it yet. In this thesis, the graphene base transistor is realized for the first time, and we focus on designing the structure and optimizing the process flow of manufacturing.
Through the measurement of Gummel plot, we find the common-emitter current gain of this transistor can achieve 104, and the common-base current gain reaches very close to 1. Furthermore, by theoretical calculation, its base transport factor can be close to 0.9. Compared with the result of graphene base hot electron transistor, our work shows very significant improvement [ 10 ]. In the meantime, we study the transistor’s potential as a phototransistor (PT). The current responsivity of this device can reach 2.24A/W, and the voltage responsivity can attain 1.36x105V/W under the exposure of green light LED (λ=520nm, P=1.25uW). Compared with the performance of graphene/silicon photodiode [ 19 ], whose current responsivity is 0.225A/W and voltage responsivity is 4x104V/W (λ=488nm, P=1.23uW), the graphene base transistor of this thesis has better performance in both current responsivity and voltage responsivity.
摘要 I
Abstract II
致謝 IV
目錄 VI
圖目錄 VIII
表目錄 XIII
第一章 前言 2
1.1 石墨烯材料的發展及應用 2
1.2 研究動機 3
1.3 論文章節架構 7
第二章 石墨烯的基礎特性 8
2.1 石墨烯的物理特性 8
2.2 拉曼光譜分析 11
2.2.1 拉曼散色的基本原理 11
2.2.2 石墨烯的拉曼光分析 11
第三章 光偵測器原理及特性簡介 14
3.1 光二極體原理 14
3.2 雙極光電晶體原理 15
3.3 蕭特基與歐姆接面 17
3.4 光偵測器的特性簡介 20
3.4.1 暗電流(Dark current)&雜訊(Noise) 20
3.4.2 量子效率(Quantum efficiency) 20
3.4.3 響應度(Responsivity) 22
3.4.4 響應速度(Response time) 23
第四章 石墨烯光偵測器實作 24
4.1 元件設計與架構 24
4.1.1 異質接面雙極性電晶體介紹 24
4.1.2 雙極性電晶體特性推導 25
4.1.3 元件架構 28
4.2 石墨烯的成長與轉移 34
4.2.1 高溫金屬催化成長石墨烯 34
4.2.2 銅箔的預處理及石墨烯的成長參數與結果 36
4.2.3 石墨烯的轉移(transfer) 40
4.3 元件製作與製程 48
4.3.1 破片樣品製作 48
4.3.2 正片樣品製作 51
第五章 量測結果與討論 63
5.1 量測儀器簡介 63
5.2 量測方式 64
5.2.1 電流對電壓量測 64
5.2.2 Gummel Plot 65
5.2.3 電壓響應度 65
5.2.4 光點大小量測 66
5.3 量測結果 67
5.3.1 電性量測 67
5.3.2 照光量測 77
第六章 結論與未來展望 87
6.1 結論 87
6.2 未來展望 89
參考文獻 90

[ 1 ] Mermin N. D., “Crystalline order in two dimensions.”, Phys. Rev. 176, 250-254 (1968)
[ 2 ] Geim A. K., Novoselov K. S., “The rise of graphene.”, Nature Material 6, 183–191 (2007)
[ 3 ] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, vol. 306, Issue 5696, pp.666-669, 2004.
[ 4 ] K. I. Bolotin, et al., “Ultrahigh electron mobility in suspended graphene”, Solid State Communications, Vol. 146, Issue 9-10, pp.351-355, 2008
[ 5 ] Frank Schwierz, “Graphene Transistors”, Nature Nanotechnology 5, pp.487-496, 2010
[ 6 ] Maria Losurdo, Giovanni Bruno, “Graphene: potential ITO-replacement as transparent conductive layer”, National Council of Research(Italy)
Web site: http://amanac.eu/workshops/wsed2015/?b5-file=1974&b5-folder=1981
[ 7 ] Y. Wu, et al., “High-frequency, scaled graphene transistors on diamond-like carbon”, Nature, vol. 472, no. 7341, pp. 74–78, 2011.
[ 8 ] V. D. Lecce, et al., “Graphene-Base Heterojunction Transistor: An Attractive Device for Terahertz Operation”, IEEE Transactions on Electron Devices, vol. 60, issue 12, pp.4263-4268, 2013
[ 9 ] W. Mehr, et al., “Vertical graphene base transistor,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 691–693, 2012.
[ 10 ] S. Vaziri, et al., “A graphene-based hot electron transistor,” Nano Lett., vol. 13, no. 4, pp. 1435–1439, 2013.
[ 11 ] C. Zeng, et al., “Vertical graphene-base hot-electron transistor,” Nano Lett., vol. 13, no. 6, pp. 2370–2375, 2013.
[ 12 ] P. R. Wallace, “The band theory of graphite”, Phys. Rev., vol. 71, pp.622-634, 1947.
[ 13 ] D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and Tapash Chakraborty, “Properties of graphene: a theoretical perspective”, Advances in Physics, vol. 59, No. 4, pp.261-482, 2010.
[ 14 ] Ying ying Wang, Zhen hua Ni, Ting Yu, Ze Xiang Shen, Hao min Wang, Yi
hong Wu, Wei Chen, et al., “Raman Studies of Monolayer Graphene: The Substrate Effect”, J. Phys. Chem., vol.112, No.29, pp.10637–10640, 2008.
[ 15 ] S. M. Sze, “Semiconductor Device Physics and Technology”, John Wiley & Sons Inc., 3rd
[ 16 ] D. F. Swinehart, “The Beer-Lambert Law”, Journal of Chemical Education, pp.333, 1962
[ 17 ] Marius Grundmann, “The physics of Semiconductors”, Springer, 2006
[ 18 ] Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles, 4e”,Mc Graw Hill Education, 2013.
[ 19 ] Xiaohong An, Fangze Liu, Yung Joon Jung and Swastik Kar, “Tunable Graphene−Silicon Heterojunctions for Ultrasensitive Photodetection”, Nano Lett. 13, pp 909−916, 2013
[ 20 ] D. L. Chen, D. W. Greve, A. M. Guzman, “Minority-Carrier Hole Diffusion Length in Heavily-Doped Polysilicon and Its Influence one Polysilicon-Emitter Transistors,” IEEE Trans. Electron Devices. vol.35, pp.1045-1054, 1988
[ 21 ] 郭俊佑, “應用多晶矽/石墨烯光二極體與MOSFET整合元件於影像感測陣列中”, 清華大學, 碩士論文, 2017
[ 22 ] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab and K.Kim, “A roadmap for graphene”, Nature, vol.490, 2012.
[ 23 ] S. Lourdudoss, S. -L. Zhang, “High concentration phosphorus doping of polycrystalline silicon by low temperature direct vapor phase diffusion of phosphine followed by rapid thermal annealing,” APPL. Phys. Lett. 64, 3461(1994)
[ 24 ] 張雅森, “具有Body-strapped Base的雙極性光電晶體特性研究”, 清華大學, 碩士論文, 2017
[ 25 ] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and J. Kelly., “Doping graphene with metal contacts”, Phys Rev Lett, 101:--, 2008.
[ 26 ] H. Matsuura, T. Okuno, H. Okushi, K. Tanaka, “Electrical properties of n-amorphous/p-crystalline silicon heterojunction”, Journal of Applied Physics 55, 1012, 1984
[ 27 ] Xuesong Li, Weiwei Cai, Luigi Colombo and Rodney S. Ruoff, “Evolution of
Graphene Growth on Ni and Cu by Carbon Isotope Labeling”, Nano Lett, Vol.9, No.12, pp. 4268-4272, 2009.
[ 28 ] Xuesong Li, Luigi Colombo and Rodney S. Ruoff, “Synthesis of Graphene
Films on Copper Foils by Chemical Vapor Deposition” , Adv. Mater., 28, pp.6247-6252, 2016.
[ 29 ] Won-Eui Hong, Jae-Sang Ro, “Kinetics of solod phase crystallization of amorphous silicon analyzed by Ramon spectroscopy”, Journal of Applied Physics 114, 073511, 2013
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *