帳號:guest(3.149.214.52)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):侯明宏
作者(外文):Hou, Ming-Hung
論文名稱(中文):超高密度之特高頻微型積體化直流功率轉換器
論文名稱(外文):Ultra-High Power Density VHF Miniaturize Integrated DC-DC Converters with GaN and CMOS In IPD Technology
指導教授(中文):徐碩鴻
指導教授(外文):Hsu, Shuo-Hung
口試委員(中文):鄭博泰
孟慶忠
口試委員(外文):Cheng, Po-tai
Meng, Chin-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063551
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:133
中文關鍵詞:功率轉換器特高頻諧振式逆變器
外文關鍵詞:DC/DC-ConverterVHFResonant-Inverters
相關次數:
  • 推薦推薦:0
  • 點閱點閱:298
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
近年來,縮小晶片尺寸為目前一大趨勢,而當電源轉換器朝降低成本與縮小面積的目標邁進時,將使傳統利用PCB板實現的電源轉換器演變到晶片化。在這個研究中,我們採取System-in-package (SiP) 的技術來達成微型積體化電源轉換器;透過提高電源轉換器開關的切換頻率,可達到較高的功率密度,且當切換頻率上升,能使被動元件的尺寸較小。而使用微製程的元件達成晶片化的系統,亦可大幅,減少整體晶片的面積。
本次研究中,共設計了三種Class-Φ2電源轉換器,因複晶製程的限制,其中兩個設計有結果,其切換頻率分別為240MHz與300MHz,其總面積均小於60 mm2,面積分別約為42 mm2與56.75 mm2,最高轉換效率為61 % 與57 %,量測最大輸出功率分別為3.38 W與3.54 W,功率密度分別為65 W/mm3與50.57 W/mm3,本次研究特別之處在於使用覆晶 (Flip Chip) 技術將三種異質晶片做整合。分別將CMOS閘級驅動器、GaN功率電晶體與IPD被動元件整合在一起。而本次電源轉換器架構是以諧振式Class-Φ2架構來呈現,其中多一組串聯的電感、電容,L2F與C2F為Class-Φ2的主要特色,其可在操作頻率的2倍頻共振,有效提高功率轉換效率,用來改善傳統使用的Class-E架構之缺點,Class-Φ2架構相較於Class-E在高頻且積體化的環境之下,可以有較少的損耗與較高的轉換效率,而其主要的原因為Class-Φ2之RF Choke電感相較於Class-E架構大幅減少,且電晶體的汲極與源極之跨壓也小於Class-E架構,故整體電路損耗可以大幅降低。同時,本電源轉換器使用到的切換開關電晶體和二極體等主動元件皆為新穎的氮化鎵材料,其原因為氮化鎵元件有較高的電子遷移率、較小的導通電阻等特色,較適合呈現在高頻、高耐壓電路使用。
第二章將介紹氮化鎵元件與寬能隙材料具有的特性,以及適用於高頻、耐高壓電路的原因。第三章則介紹穩懋電晶體主動元件與IPD製程之被動元件的實現。第四章中,將介紹諧振式逆變器與電源轉換器設計概念以及常見架構之優缺點比較。第五章則為本研究Class-Φ2電源轉換器之實現與量測結果。第六章為總結本次研究以及探討未來發展。
Reducing the size of the chip is now the trend in recent years. In this study, we design the power converter using the concept of in System-in-package (SIP) instead of the traditional PCB boards to reduce the cost and chip size. However, in order to integrate all the components on chip, the switching frequency of the power converter must be increased. As the frequency increases, the size of passive components can be reduced but increase the switching loss. Therefore, the resonant type of power converter is adopted in this work to overcome this issue.
In this work, we design three different power converters, while only two of them can be obtain. The types of Class-Φ2 resonant power converter with the switching frequencies at 240MHz and 300MHz, respectively. The chip sizes are less than 60mm2, approximately 42mm2, and 56.75mm2 with the maximum power conversion efficiency of 61% and 57%, respectively. The maximum output power is 3.38W and 3.54 W, and the power density is approximately 65 W/mm3 and 57.57 W/mm3, respectively.
We combine CMOS and GaN chips by flip-chip bonding technology in the Integrated Passive Device (IPD) substrate including inductors and capacitances. The gate driver is realized by TSMC 0.18-μm CMOS. The power switch and rectifier are fabricated in WIN GaN 0.25-μm HEMT technology. All the passive components including inductors are fabricated in the IPD process. The class-Φ2 resonant power converter has lower losses and a higher conversion efficiency compare with the Class E resonant power converter. The reason is that the RF Choke inductance can be significantly reduced for the Class-Φ2 topology, also the voltage across the drain and source is less than the Class E type, and the overall circuit loss can be greatly reduced.
Chapter 2 introduces the characteristics of GaN power device and wide bandgap power semiconductor devices which are suitable for the high-frequency and high-voltage circuit. Chapter 3 introduces the realization of the active device in WIN 0.25-μm GaN HEMT process and the passive components in IPD process. In Chapter 4, we will introduce the design concept of resonant inverter and power converter design concept. Chapter 5 shows the realization of the Class-Φ2 power converter and the measurement results. Chapter 6 summarizes this work and future work.
第1章 緒論 16
1.1 研究背景與動機 16
1.2 論文架構 17
第2章 氮化鎵主動元件之基本特性 18
2.1 氮化鎵材料的特性 18
2.1.1 寬能隙材料 18
2.1.2 導通電阻與崩潰電壓之探討 20
2.1.3 電子飽和速度 21
2.2 總結 22
第3章 主動元件與被動元件的特性 23
3.1穩懋氮化鎵元件之特性 23
3.1.1 穩懋氮化鎵元件之量測結果 25
3.1.2 氮化鎵蕭特基二極體之實現 26
3.2 被動元件的實現 28
3.3 總結與討論 32
第4章 諧振式電源轉換器介紹 33
4.1電源轉換器的概念 33
4.1.1諧振式DC-DC直流轉換器 33
4.1.2諧振式逆變器 (RESONANT INVERTER) 種類 34
4.1.3諧振式逆變器之比較 40
4.2 硬切與軟切之特性比較 41
第5章 CLASS-Φ2 POWER CONVERTER 43
5.1 CLASS-Φ2 POWER CONVERTER之介紹 43
5.2 CLASS-Φ2 RESONANT INVERTER原理 44
5.2.1多諧振式電路 47
5.2.2諧振式整流器 50
5.3 CLASS-Φ2 POWER CONVERTER之設計 51
5.3.1 各種製程晶片異質整合之辦法 51
5.3.2 閘極驅動電路 58
5.3.3 CLASS-Φ2 POWER CONVERTER之模擬 65
5.4 量測結果 72
5.4.1 架構一之負載為50 OHM之量測結果 74
5.4.2 架構一之負載為75 OHM之量測結果 81
5.4.3 架構一之負載為100 OHM之量測結果 88
5.4.4 架構二之負載為50 OHM之量測結果 95
5.4.5 架構二之負載為75 OHM之量測結果 102
5.4.6 架構二之負載為100 OHM之量測結果 109
5.4.7 量測與模擬之比較 116
5.4. 總結與討論 124
第6章 結論與未來展望 126
參考文獻 128

[1] C. Tsou, K. Wei, Y. Lian, and S. S. H. Hsu, “2.07-kV AlGaN/GaN Schottky barrier diodes on silicon with high Baliga’s figure- of-merit,” IEEE Electron Device Letters., vol. 37, no. 1, pp. 70-73, Jan. 2016
[2] J. M. Rivas, O. Leitermann, Y. Han, and D. J. Perreault, “A very high frequency DC–DC converter based on a class φ2 resonant inverter,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2980–2992, Oct. 2011.
[3] P. Shamsi, B. Fahimi, “Design and development of very high frequency resonant dc-dc boost converters,” IEEE Trans. Power Electron., vol. 27, no. 8, Sep. 2012.
[4] R. Pilawa-Podgurski, A. Sagneri, J. Rivas, D. Anderson and D. Perreault, “Very high frequency resonant boost converters”, IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1654-1665, Jun. 2009.
[5] R. C. Pilawa-Podgurski, “Design and evaluation of a very high frequency DC/DC
converter,” Master’s thesis, Dept. Electr. Eng. Comput. Sci., Massachusetts Inst.
Technol., Cambridge, Feb. 2007.
[6] J. Rivas, Y. Han, O. Leitermann, A. Sagneri and D. Perreault, "A high-frequency resonant inverter topology with low-voltage stress", IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1759-1771, Jul. 2008.
[7] J. Phinney, D. Perreault and J. Lang, "Radio-frequency inverters with transmission-line input networks", 37th Annual IEEE Power Electronics Specialists Conference, pp. 1-9.
[8] S. S. H. Hsu, C. Tsou, Y. Lian, and Y. Lin, “GaN-on-silicon devices and technologies for RF and microwave applications,” IEEE Intl. Symp. Radio-Frequency Integration Technology, Aug. 2016.
[9] M. Willander et al., “Silicon carbide and diamond for high temperature devices
applications,” Journal of materials science: materials in electronics, pp. 1-25,2006.
[10] B.J. Baliga, “Semiconductors for high voltage vertical channel field effect transistors,” J. Appl Phys , vol 53, pp 1759-1764, 1982.
[11] M. A. Briere, “GaN-based power devices offer game-changing potential in power-conversion electronics,’’ Enterprises LLC design article, 2008[online]. Available: www.eetimes.com
[12] O. Ambacher, “Growth and applications of Group III-nitrides,” J. Phys. D: Appl. Phys. 31 (1998) 2653–2710.
[13] M. Madsen, A. Knott, and M. A. E. Andersen, “Low power very high frequency
switch-mode power supply with 50 V input and 5V output”, IEEE Trans. Power
Electron., vol. 29, no. 12, pp. 6569–6580, Dec. 2014.
[14] H. Koizumi, M. Iwadare and S. Mori, “Class E DC-DC converter with second harmonic resonant class E inverter and class E rectifier”, Proc. IEEE Appl. Power Electron. Conf., pp. 1012-1018, 1994.
[15] N. O. Sokal and A. D. Sokal, “Class E-A new class of high-efficiency tuned single-ended switching power amplifiers, ” in IEEE Journal of Solid-State Circuits, vol. 10, no. 3, pp. 168-176, Jun 1975.
[16] “CoolMOS™ Benefits in both Hard and Soft Switching SMPS topologies,” Infineon Technologies, November 2011.
[17] B. K. Bose, “Need a Switch? ”, in IEEE Industrial Electronics Magazine, vol. 1, no. 4, pp. 30-39, Winter 2007.
[18] B. Angeline Jerusha, S. Anu Vadhana, A. Arrul Dhana Mathy and R. Ramaprabha, “Comparative Study of Hard Switching and Soft Switching Boost Converter Fed from a PV Source”, International Journal of Engineering Research (ISSN : 2319-6890) Volume No.2, Issue No. 5, pp : 328-331 01 Sept. 2013
[19] S. Williams, “The softswitch advantage, ” in IEEE Review, vol. 48, no. 4, pp. 25-29, Jul 2002.
[20] R. C. Pilawa-Podgurski, “Design and evaluation of a very high frequency DC/DC
converter,” Master’s thesis, Dept. Electr. Eng. Comput. Sci., Massachusetts Inst.
Technol., Cambridge, Feb. 2007.
[21] J. W. Phinney, “Multi-resonant passive components for power conversion,” Ph.D. Thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA., June 2005.
[22] J. Phinney, D. Perreault, and J. Lang, “Radio-frequency inverters with
transmissionline input networks,” in Power Electronics Specialists Conference, 2006. PESC ’06. 37th IEEE, 18-22 June 2006, pp. 1–9.
[23] F. Raab, “Maximum efficiency and output of class-f power amplifiers,”
Microwave Theory and Techniques, IEEE Transactions on, vol. 49, no. 6, pp.
1162–1166, June2001.
[24] K. Honjo, “A simple circuit synthesis method for microwave class-f ultra-high-efficiency amplifiers with reactance-compensation circuits,” Solid-State Electronics, pp. 1477–1482, 2000.
[25] A. Grebennikov, RF and Microwave Power Amplifer Design (Chapter 7). NY: Mc Graw-Hill Professional Engineering, 2005.
[26] J. M. Rivas, “Radio frequency dc-dc power conversion,” Ph.D. dissertation,
Dept. of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, September 2006.
[27] J. M. Rivas, Y. Han, O. Leitermann, A. Sagneri, and D. J. Perreault, “A high-frequency resonant inverter topology with low voltage stress,” in Submitted to Power Electronics Specialist Conference Proceedings 2007, June 2007.
[28] M. K. Kazimierczuk, D. Czarkowski, “Resonant Power Converters,” Wiley, 2010
[29] Tirdad Sowlati, Domine M. W. Leenaerts, “A 2.4-GHz 0.18-m CMOS Self-Biased Cascode Power Amplifier,” IEEE J. Solid-State Circuits, vol. 38, no. 8, p.p1318–1324, Aug 2003.
[30] Wardah Inam, Khurram K. Afridi, and David J. Perreault, “High Efficiency
Resonant DC/DC Converter Utilizing a Resistance Compression Network,” IEEE Trans. Power Electron., vol. 29, no. 8, pp.4126–4135, Aug 2014.
[31] L. Roslaniec, A.S. Jurkov, A. Bastami, D. J. Perreault, “Design of single-switch
inverters for variable resistance / load modulation operation.” IEEE Trans. Power
Electron., vol. 30, no. 6, pp.3200 -3214, 2015
[32] J. Phinney, J. Lang and D. Perreault, “Multi-resonant microfabricated inductors and transformers”, Proc. 35th Annu. Power Electron. Spec. Conf., pp. 4527-4536.
[33] Y.-P. Hong et al., “High efficiency GaN switching converter IC with bootstrap driver for envelope tracking applications,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., Jun. 2013, pp. 353–356.
[34] K. Onizuka, H. Kawaguchi, M. Takamiya, and T. Sakurai, “Stacked-chip implementation of on-chip buck converter for power-aware distributed power supply systems,” in Proc. IEEE Asian Solid-State Circuits Conf., 2006, pp. 127–130.
[35] Y. Ahn, H. Nam, and J. Roh, “A 50-MHz fully integrated low-swing buck converter using packaging inductors,” IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4347–4356, Oct. 2012.
[36] M. Wens and M. S. J. Steyaert, “A fully integrated CMOS 800-mW fourphase
semiconstant on/off-time step-down converter,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 326–333, Feb. 2011.
[37] P. Choi, U. Radhakrishna, C. C. Boon, D. Antoniadis, L. S. Peh “A fully integrated inductor-based gan boost converter with self-generated switching signal for vehicular applications”, IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5365–5368, Jan. 2016.
[38] Selwan E, Park G, Gajic Z. “Optimal control of the Cuk converter used in solar cells via a jump parameter technique Iet Control Theory and Applications”. 9: 893-899. DOI: 10.1049/iet-cta.2014.0258
[39] R. Blange, C. Mahanta and A. K. Gogoi, “MPPT of solar photovoltaic cell using perturb & observe and fuzzy logic controller algorithm for buck-boost DC-DC converter,” 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, 2015, pp. 1-5.
[40] C. P. Ugale and V. V. Dixit, “Buck-boost converter using Fuzzy logic for low voltage solar energy harvesting application,” 2017 11th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, 2017, pp. 413-417.
[41] Nisha K S and Mini V P, “Battery-less boost converter for thermal energy harvesting system,” 2015 International Conference on Control Communication & Computing India (ICCC), Trivandrum, 2015, pp. 331-336.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *