|
[1] C. Tsou, K. Wei, Y. Lian, and S. S. H. Hsu, “2.07-kV AlGaN/GaN Schottky barrier diodes on silicon with high Baliga’s figure- of-merit,” IEEE Electron Device Letters., vol. 37, no. 1, pp. 70-73, Jan. 2016 [2] J. M. Rivas, O. Leitermann, Y. Han, and D. J. Perreault, “A very high frequency DC–DC converter based on a class φ2 resonant inverter,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2980–2992, Oct. 2011. [3] P. Shamsi, B. Fahimi, “Design and development of very high frequency resonant dc-dc boost converters,” IEEE Trans. Power Electron., vol. 27, no. 8, Sep. 2012. [4] R. Pilawa-Podgurski, A. Sagneri, J. Rivas, D. Anderson and D. Perreault, “Very high frequency resonant boost converters”, IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1654-1665, Jun. 2009. [5] R. C. Pilawa-Podgurski, “Design and evaluation of a very high frequency DC/DC converter,” Master’s thesis, Dept. Electr. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, Feb. 2007. [6] J. Rivas, Y. Han, O. Leitermann, A. Sagneri and D. Perreault, "A high-frequency resonant inverter topology with low-voltage stress", IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1759-1771, Jul. 2008. [7] J. Phinney, D. Perreault and J. Lang, "Radio-frequency inverters with transmission-line input networks", 37th Annual IEEE Power Electronics Specialists Conference, pp. 1-9. [8] S. S. H. Hsu, C. Tsou, Y. Lian, and Y. Lin, “GaN-on-silicon devices and technologies for RF and microwave applications,” IEEE Intl. Symp. Radio-Frequency Integration Technology, Aug. 2016. [9] M. Willander et al., “Silicon carbide and diamond for high temperature devices applications,” Journal of materials science: materials in electronics, pp. 1-25,2006. [10] B.J. Baliga, “Semiconductors for high voltage vertical channel field effect transistors,” J. Appl Phys , vol 53, pp 1759-1764, 1982. [11] M. A. Briere, “GaN-based power devices offer game-changing potential in power-conversion electronics,’’ Enterprises LLC design article, 2008[online]. Available: www.eetimes.com [12] O. Ambacher, “Growth and applications of Group III-nitrides,” J. Phys. D: Appl. Phys. 31 (1998) 2653–2710. [13] M. Madsen, A. Knott, and M. A. E. Andersen, “Low power very high frequency switch-mode power supply with 50 V input and 5V output”, IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6569–6580, Dec. 2014. [14] H. Koizumi, M. Iwadare and S. Mori, “Class E DC-DC converter with second harmonic resonant class E inverter and class E rectifier”, Proc. IEEE Appl. Power Electron. Conf., pp. 1012-1018, 1994. [15] N. O. Sokal and A. D. Sokal, “Class E-A new class of high-efficiency tuned single-ended switching power amplifiers, ” in IEEE Journal of Solid-State Circuits, vol. 10, no. 3, pp. 168-176, Jun 1975. [16] “CoolMOS™ Benefits in both Hard and Soft Switching SMPS topologies,” Infineon Technologies, November 2011. [17] B. K. Bose, “Need a Switch? ”, in IEEE Industrial Electronics Magazine, vol. 1, no. 4, pp. 30-39, Winter 2007. [18] B. Angeline Jerusha, S. Anu Vadhana, A. Arrul Dhana Mathy and R. Ramaprabha, “Comparative Study of Hard Switching and Soft Switching Boost Converter Fed from a PV Source”, International Journal of Engineering Research (ISSN : 2319-6890) Volume No.2, Issue No. 5, pp : 328-331 01 Sept. 2013 [19] S. Williams, “The softswitch advantage, ” in IEEE Review, vol. 48, no. 4, pp. 25-29, Jul 2002. [20] R. C. Pilawa-Podgurski, “Design and evaluation of a very high frequency DC/DC converter,” Master’s thesis, Dept. Electr. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, Feb. 2007. [21] J. W. Phinney, “Multi-resonant passive components for power conversion,” Ph.D. Thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA., June 2005. [22] J. Phinney, D. Perreault, and J. Lang, “Radio-frequency inverters with transmissionline input networks,” in Power Electronics Specialists Conference, 2006. PESC ’06. 37th IEEE, 18-22 June 2006, pp. 1–9. [23] F. Raab, “Maximum efficiency and output of class-f power amplifiers,” Microwave Theory and Techniques, IEEE Transactions on, vol. 49, no. 6, pp. 1162–1166, June2001. [24] K. Honjo, “A simple circuit synthesis method for microwave class-f ultra-high-efficiency amplifiers with reactance-compensation circuits,” Solid-State Electronics, pp. 1477–1482, 2000. [25] A. Grebennikov, RF and Microwave Power Amplifer Design (Chapter 7). NY: Mc Graw-Hill Professional Engineering, 2005. [26] J. M. Rivas, “Radio frequency dc-dc power conversion,” Ph.D. dissertation, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, September 2006. [27] J. M. Rivas, Y. Han, O. Leitermann, A. Sagneri, and D. J. Perreault, “A high-frequency resonant inverter topology with low voltage stress,” in Submitted to Power Electronics Specialist Conference Proceedings 2007, June 2007. [28] M. K. Kazimierczuk, D. Czarkowski, “Resonant Power Converters,” Wiley, 2010 [29] Tirdad Sowlati, Domine M. W. Leenaerts, “A 2.4-GHz 0.18-m CMOS Self-Biased Cascode Power Amplifier,” IEEE J. Solid-State Circuits, vol. 38, no. 8, p.p1318–1324, Aug 2003. [30] Wardah Inam, Khurram K. Afridi, and David J. Perreault, “High Efficiency Resonant DC/DC Converter Utilizing a Resistance Compression Network,” IEEE Trans. Power Electron., vol. 29, no. 8, pp.4126–4135, Aug 2014. [31] L. Roslaniec, A.S. Jurkov, A. Bastami, D. J. Perreault, “Design of single-switch inverters for variable resistance / load modulation operation.” IEEE Trans. Power Electron., vol. 30, no. 6, pp.3200 -3214, 2015 [32] J. Phinney, J. Lang and D. Perreault, “Multi-resonant microfabricated inductors and transformers”, Proc. 35th Annu. Power Electron. Spec. Conf., pp. 4527-4536. [33] Y.-P. Hong et al., “High efficiency GaN switching converter IC with bootstrap driver for envelope tracking applications,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., Jun. 2013, pp. 353–356. [34] K. Onizuka, H. Kawaguchi, M. Takamiya, and T. Sakurai, “Stacked-chip implementation of on-chip buck converter for power-aware distributed power supply systems,” in Proc. IEEE Asian Solid-State Circuits Conf., 2006, pp. 127–130. [35] Y. Ahn, H. Nam, and J. Roh, “A 50-MHz fully integrated low-swing buck converter using packaging inductors,” IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4347–4356, Oct. 2012. [36] M. Wens and M. S. J. Steyaert, “A fully integrated CMOS 800-mW fourphase semiconstant on/off-time step-down converter,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 326–333, Feb. 2011. [37] P. Choi, U. Radhakrishna, C. C. Boon, D. Antoniadis, L. S. Peh “A fully integrated inductor-based gan boost converter with self-generated switching signal for vehicular applications”, IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5365–5368, Jan. 2016. [38] Selwan E, Park G, Gajic Z. “Optimal control of the Cuk converter used in solar cells via a jump parameter technique Iet Control Theory and Applications”. 9: 893-899. DOI: 10.1049/iet-cta.2014.0258 [39] R. Blange, C. Mahanta and A. K. Gogoi, “MPPT of solar photovoltaic cell using perturb & observe and fuzzy logic controller algorithm for buck-boost DC-DC converter,” 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, 2015, pp. 1-5. [40] C. P. Ugale and V. V. Dixit, “Buck-boost converter using Fuzzy logic for low voltage solar energy harvesting application,” 2017 11th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, 2017, pp. 413-417. [41] Nisha K S and Mini V P, “Battery-less boost converter for thermal energy harvesting system,” 2015 International Conference on Control Communication & Computing India (ICCC), Trivandrum, 2015, pp. 331-336.
|