帳號:guest(3.147.48.21)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林曼鈞
作者(外文):Lin, Man-Chun
論文名稱(中文):利用刮刀塗佈技術製作有效面積 216平方公分之高效率有機太陽能電池
論文名稱(外文):216 cm2 active area highly efficient organic solar cell by blade coating
指導教授(中文):洪勝富
指導教授(外文):Horng, Sheng-Fu
口試委員(中文):孟心飛
張志宇
口試委員(外文):Meng, Hsin-Fei
Chang, Chih-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063548
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:74
中文關鍵詞:刮刀塗佈高分子大面積有機太陽能電池高效率薄膜製程
外文關鍵詞:Blade-coatingLarge-areaOrganic solar cellsHigh efficiencyPolymerThin-film processP3HTPBDTTT-EFTPC61BMPC71BM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:738
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來世界各地氣候的異常現象趨近嚴重,為了能夠永續這個適合人居住的地球我們必須減少二氧化碳之排放量且發展出永續能源使人類能夠得以長久生存。故世界各國優秀團隊一直努力積極地開發綠色能源,然而太陽能電池綠色能源則為最具環保性的一種。在台灣,因處於亞熱帶地區,擁有充足日照時間及光強度,十分利於使用太陽能做替代能源。現在普遍看到的太陽能電池皆為無機太陽能電池,但其有著價格之昂貴以及汙染的問題;然而有機太陽能電池之優點在於製程簡單、製造便宜且較環保,比起無機太陽能電池更有商業化的價值;而大面積化將會是有機太陽能電池的一個重要趨勢,大面積量產後能大幅將成本壓低,並且提升其實用性,且有機太陽能電池可用於可撓式基板或使用半透明電極製作,與建築的相容性相當高,在裝置上也更具設計性及美觀價值。
本論文主要以發展高效率大面積有機太陽能為主,使用20 x 30cm2大小基板製作有效面積216cm2的大面積太陽能電池,大幅提升使用216cm2基板的有機太陽能電池之轉換效率,首先使用ITO/PEDOT:PSS/P3HT:PC61BM/LiF/Al結構進行研究之元件已達到1.62%的轉換效率,且在ITO/PEDOT:PSS/PBDTTT-EFT:PC71BM/LiF/Al結構上達到5.2%的轉換效率[A4]。最重要的是大面積元件在穩定性方面極佳,使用P3HT:PC61BM之元件經過一年左右,效率仍維持6成以上;使用PBDTTT-EFT:PC71BM之元件經過一個多月左右最佳壽命仍維持在9成以上。
最後,把金屬電極改為半透明結構以ITO/PEDOT:PSS/ PBDTTT-EFT:PC71BM /LiF/Al/Ag製作元件,達到3.59%轉換效率[A4]。
關鍵字: 刮刀塗佈、大面積、有機太陽能電池、高效率、高分子、薄膜製程
Recently, the anomalies of the global climate is gradually intensifying. In order to sustain the environment we lived, we must reduce the amount of carbon dioxide emissions and find the way to develop the sustainable energy. The green energy has been being developed from the past years by many outstanding teams from the world. However, in all of the green energy, the solar cell is the most environmentally-friendly one. Taiwan is located in the subtropical region so there is sufficient intensity of sunshine which is lasting average one third of a day. Thus, it is conductive to develop this kind of the new alternative energy in Taiwan. Lately, the solar cells are most of inorganic solar cells, but it has disadvantage of costliness and pollution. In contrast, organic solar cells have more commercial value than inorganic solar cells because of its advantage which are simple process, manufacturing cheaper and more environmentally-friendly. In the near future, it is necessary for organic solar cell to enlarge to reduce manufacturing cost and be more practical in our life. Moreover, the organic solar cells with flexible substrate or translucent electrodes can be more compatible for buildings or other constructions. The combination with constructions and organic solar cells will be more various and aesthetic.This thesis is mainly about the development of organic solar cell process fabricated on 20 cm x 30 cm glass substrate with active area of 216 cm2. At first, we used the structure ITO/ PEDOT:PSS/ P3HT:PC61BM/ LiF/ Al for our reaserch and reached power conversion efficiency (PCE) of 1.62%. And the structure ITO/ PEDOT:PSS/ PBDTTT-EFT: PC71BM / LiF / Al also achieved power conversion efficiency (PCE) of 5.2 %[A4]. Importantly, the large-area device based on P3HT: PC61BM and PBDTTT-EFT: PC71BM blend can retain upon 60% and 90%, respectively.At last, the metal electrode was changed to a translucent structure ITO / PEDOT: PSS / PBDTTT-EFT: PC71BM / LiF / Al / Ag. The device achieved 3.59% power conversion efficiency[A4].
Key word : Blade-coating、Large-area、Organic solar cells、High efficiency、Polymer、Thin-film process、P3HT、PBDTTT-EFT、PC61BM、PC71BM
摘要 I
Abstract II
誌謝 IV
目錄 VI
圖目錄 X
表目錄 XIII
第一章 序論 1
1.1 研究背景 1
1.1.1 前言 1
1.1.2 太陽電池的發展 2
1.1.3 發展 3
1.2 研究動機 6
1.2.1 有機高分子材料太陽能電池優勢 6
1.2.2 有機高分子太陽能電池之混合層 8
1.2.3 半透明 9
1.3 文獻回顧 10
1.3.1 刮刀塗佈製程方法製作高分子有機光電元件 10
1.3.2 有機太陽能電池的大面積化 12
1.4 論文架構 14
第二章 實驗原理 15
2.1 太陽電池基本介紹 15
2.1.1 太陽電池基本原理 15
2.1.2 理想太陽電池等效電路 16
2.1.3 實際太陽電池等效電路 17
2.1.4 太陽能電池的基本參數介紹 19
2.1.5 太陽能電池操作分析 23
2.2 有機太陽能電池材料特性介紹 27
2.2.1 共軛高分子材料特性 27
2.2.2 有機太陽能電池能帶理論 28
2.3 本論文研究理論 29
2.3.1 主動層材料 29
2.3.2 電洞傳輸層材料 32
2.3.3 陽極、陰極材料 33
2.4 研究之元件結構與能帶圖 33
第三章 實驗方法與流程 35
3.1 有機太陽電池元件製作流程 35
3.2 ITO基板的蝕刻與圖樣化 35
3.3 ITO基板的準備及清潔 38
3.4 正結構高分子成膜 39
3.4.1 實驗設備 39
3.4.2 電洞傳輸層(Hole Transport Layer, HTL) 40
3.4.3主動層 41
3.5 電極蒸鍍 42
3.6 封裝 43
3.7 元件量測 44
第四章 大面積太陽能電池之結果與討論 45
4.1 實驗動機與設計 45
4.1.1 實驗動機 45
4.1.2 實驗設計 46
4.2 大面積製程困難及改善 47
4.2.1 刮刀塗佈大面積的膜厚均勻度 47
4.2.2 元件受熱均勻性 49
4.2.2 蒸鍍電極的燒毀 50
4.2.3 元件量測系統 51
4.3 P3HT大面積元件實驗討論與結果 55
4.3.1 主動層膜厚均勻性對結果的影響 55
4.3.2 主動層退火時間對結果的影響 56
4.3.3 效率及穩定性 57
4.4 PBDTTT-EFT大面積元件實驗討論與結果 59
4.4.1 主動層膜厚對結果的影響 59
4.4.2 主動層退火時間對壽命的影響 60
4.4.3 半透式元件結果 61
4.4.4 綠溫室應用 63
第五章 總結與未來展望 68
參考文獻 71


[1]. K.-M. Huang, Y.Q. Wong, M.-C. Lin, C.-H. Liao, C.-H. Chen, J.-Y. Chen, Y.-H. Huang, H.-F. Meng, C.-Y. Chang, Z. Ge, Y.-F. Chang, S.-F. Horng, H.-W. Zan, L. Hong, Y.-C. Chao, P.-T. Tsai, Y.-C. Lee, C.-T. Liao, H. Y. Wong, “ Towards Long-Term Stable and Efficient Large-Area Organic Solar Cells,” Manuscript submitted for publication.
[2]. D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon pn junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25, 676 (1954).
[3]. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “ Novel 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl.Phys. Lett. 73, 1991 (1998).
[4]. O. Schultz,S. W. Glunz, G. P. Willeke, “ Multicrystalline silicon solar cells exceeding 20% efficiency,” Prog. Photovolt. : Res. Appl.12, 553( 2004).
[5]. S. Benagli, D. Borrello, E. Vallat-Sauvain, J .Meier, U. Kroll, J .Hötzel, J .Spitznagel, J .Steinhauser, L .Castens, Y. Djeridane “ High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor,” 24th European Photovoltaic Solar Energy Conference, Hamburg, Sept. (2009).
[6]. News-“Tandem organic photovoltaic reaches 10.6% efficiency a world’s first for polymer organic photovoltaic devices”(2012).[7]. K. M. Coakley,Wudl and M. D. McGehee,“Conjugated polymer photovoltaic cells,” Chem. Mater. 16, 4533 (2004).
[8]. Harald Hoppe, and Niyazi Serdar Sariciftci, “Organic solar cell: An review,” J. Mater. Res. , Vol. 19, No. 7, (2004).
[9]. K. Kim, J. Liu, M. A. G. Namboothiry, D. L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics” Appl. Phys. Lett., 90, 163511 (2007)
[10]. P.-T.Tsai, K.-C.Lin, C.-Y. Wu, C.-H.Liao, M.-C.Lin, Y.Q.Wong, H.-F.Meng, C.-Y.Chang, C.-L.Wang, Y.-F.Huang, S.-F.Horng, H.-W.Zan, Y.-C.Chao, Towards Long-Term Stable and Efficient Large-Area Organic Solar Cells. ChemSusChem, (2017).
[11]. S. R. Tseng, H. F. Meng, K. C. Lee, and S. F. Horng. Appl. Phys. Lett. 93, 153308 (2008).
[12]. S. S. Kim, S. I. Na, J. Jo, G. Tae, and D. Y. Kim. ,“Efficient polymer solar cells fabricated by simple brush painting,”Adv. Mater. 19, 4410 (2007)
[13]. F.C.Krebs, T.Tromholt and M. Jørgensen,“Upscaling of polymer solar cell fabrication using full roll-to-roll processing”, Nanoscale, 2, 873 (2010).
[14]. R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R. H. Friend, A. B. Holmes,“The photovoltaic response in poly(ppheny1ene vinylene) thin-film devices”, J.Phys. :Condens. Matter. 6, 1379 (1994).[15]. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M.T. Rispens, L. Sanchez, J. C. Hummelen, and T Fromherz, “ The influence of materials work function on the open circuit voltage of plastic solar cells,” Thin Solid Film, 403-404,368 (2002).
[16]. H. Kim, S-H. Jin, H. Suh, and K. Lee, “Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol. 5215, p. 111(SPIE, Bellingham, WA, 2004).
[17]. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw, “ Two-dimensional charge transport in self-organized,high-mobility conjugated polymers,” Nature, 401, 685 (1999).[18]. J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” J.Org. Chem. 60, 532 (1995)
[19]. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003)
[20]. W. Huang, E. Gann, L. Thomsen, C. Dong, Y.-B. Cheng, C. R. McNeill, Unraveling the Morphology of High Efficiency Polymer Solar Cells Based on the Donor Polymer PBDTTT-EFT, Advanced Energy Materials Volume 5, Issue 7 April 8, 2015.[21]. H.C.Liao, C.C.Ho, C.Y.Chang, M.H.Jao, S.B.Darling, W.F.Su, Additives for morphology control in high-efficiency organic solar cells, Mater. Today. 16 (2013) 326–336.
[22]. P.T.Tsai, K.C.Yu, C.J.Chang, S.F.Horng, H.F.Meng, Large-area organic solar cells by accelerated blade coating, Org. Electron. Physics, Mater. Appl. 22 (2015) 166–172.
[23]. Y.Q.Wong, H.-F.Meng, H.Y.Wong, C.S.Tan, C.-Y.Wu, P.-T.Tsai, C.-Y.Chang, S.-F.Horng, H.-W.Zan, Efficient semitransparent organic solar cells with good color perception and good color rendering by blade coating, Org. Electron. 43 (2017) 196–206.
[24]. Lucera, L. et al. Printed semi-transparent large area organic photovoltaic modules with power conversion efficiencies of close to 5 %. Org. Electron. 45, 209-214 (2017).
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *