帳號:guest(18.223.237.82)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳宗煥
作者(外文):Chen, Tsung-Huan
論文名稱(中文):以薄膜擠壓阻尼效應為基礎之 壓電驅動電容感測共振型壓力感測器
論文名稱(外文):Squeeze-film Damping Based Resonant Pressure Sensor with Piezoelectric Driving and Capacitive Sensing
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-Chen
口試委員(中文):劉承賢
傅建中
口試委員(外文):Liu, Cheng-Hsien
Fu, Chien-Chung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063547
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:93
中文關鍵詞:薄膜擠壓阻尼效應壓力感測器壓電式驅動電容式感測
外文關鍵詞:Squeeze-film damping effectPressure sensorPiezoelectric drivingCapacitive sensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:544
  • 評分評分:*****
  • 下載下載:34
  • 收藏收藏:0
本論文旨在探討薄膜擠壓阻尼效應(Squeeze-film damping effect)於壓力感測器之應用。在微機電領域中,薄膜擠壓效應已被廣泛的研究,但主要聚焦於此效應對於動態結構所造成的非理想性,直到近年才開始誕生將此效應應用在壓力感測上的概念。在本研究中,我們採用TSMC MEMS shuttle製程,製作出大小為4mm×4mm、厚度為40μm之晶片,並設計九個不同面積、彈力係數的壓力感測器,將其與壓電片、感測電路整合在PCB板上。PCB板將放置於壓力控制腔中,透過壓電式驅動、電容式感測的方式,捕捉結構共振頻隨壓力的變化,並與模擬結果做比較,以一面積為800μm×800μm的感測元件為例,其感測度能達到0.945 Hz/Pa。
In this thesis, we discuss the use of squeeze-film damping effect for pressure sensing. In the field of microelectromechanics system(MEMS), this effect has been extensively studied, but mostly focused on the non-ideal effect it causes on dynamic structures. Recently, the concept of applying this effect to atmospheric pressure sensing has been proposed. In this work, 9 pressure sensors of 40μm in thickness are designed in a 4mm×4mm chip, which is fabricated by the TSMC MEMS shuttle process. The sensor chip is integrated with a piezoelectric actuator and the corresponding sensing circuit on a printed-circuit board(PCB). The PCB is placed in a pressure controlled chamber for testing. Combined with piezoelectric driving and capacitive sensing mechanism, the resonant frequency shift is comparable to the simulations. The sensitivity of an 800μm×800μm structure is 0.945 Hz/Pa.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XIII
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 8
1-3 研究動機 12
1-4 量測系統架構 13
第2章 薄膜擠壓效應之分析與模擬 15
2-1 薄膜擠壓效應介紹 15
2-2 薄膜擠壓效應之理論 17
2-3 薄膜擠壓效應之應用 21
2-4 薄膜擠壓效應之模擬 25
第3章 壓力感測器結構之設計與模擬 29
3-1 感測器結構設計 29
3-2 結構感測度模擬 32
3-3 結構製程設計 38
3-4 電容式感測原理與感測電容設計 39
3-5 壓電驅動與電容感測機制 41
3-6 電路板設計 42
第4章 量測與討論 43
4-1 製程量測 43
4-2 共振頻量測 45
4-2-1 LDV共振頻量測結果與COVENTOR模擬結果 45
4-2-2 LDV頻率響應量測結果與MATLAB模擬結果 52
4-3 截止電壓與壓力感測範圍 56
4-4 壓力感測度量測 60
4-4-1 壓力控制與量測系統 60
4-4-2 10 kPa感測度量測 61
4-4-3 1 kPa感測度量測 71
第5章 結論與未來 81
5-1 研究成果與討論 81
5-2 未來工作 82
第6章 參考文獻 83
第7章 附錄 87
7-1 轉阻放大器規格表 87
7-2 壓電片規格表 88
7-3 結構OM量測 89

[1] Ali E. Kubba, Ahmed Hasson, Ammar I. Kubba, and Gregory Hall, "A micro-capacitive pressure sensor design and modelling," Journal of Sensors and Sensor Systems, 5, 95-112, 2016.
[2] W. P. Eaton and J. H. Smith, "Micromachined pressure sensors: review and recent developments," Smart Materials and Structures, 6, 530-539, 1997.
[3] Zhixiong Liu, Don L. DeVoe, "Micromechanism fabrication using silicon fusion bonding," Robotics and Computer Integrated Manufacturing, 17, pp. 131-137, 2001.
[4] Susumu Sugiyama, Keiichi Shimaoka and Osamu Tabata, "Surface-Micromachined Microdiaphragm Pressure Sensors," Sensors and Materials, 4, 5, pp. 265-275, 1993.
[5] J. C. Sanchez, "Semiconductor strain-gage pressure sensors," Instruments and Control Systems, 20, pp. 117,1963.
[6] A. C. M. Gieles and G.H. J. Somers, "Miniature pressure transducers with a silicon diaphragm," Philips technical review, 33, pp. 14-20, 1973.
[7] J. B. Lasky, S. R. Stiffler, F. R. White and J. R. Abernathy, " Silicon-on-insulator (SOI) by bonding and etch-back," International Electron Devices Meeting (IEDM 85), 7, pp. 684, 1985.
[8] K. Shimaoka, O. Tabata, M. Kimura, and S. Sugiyama, "Micro-Diaphragm Pressure Sensor Using Polysilicon Sacrificial Layer Etch-Stop Technique," Paper presented at Transducers '93. Yokohama.
[9] Haisheng San, Hong Zhang, Qiang Zhang, Yuxi Yu, and Xuyuan Chen, "Silicon–glass-based single piezoresistive pressure sensors for harsh environment applications," Journal of Micromechanics and Microengineering, 23, pp. 8, 2013.
[10] Shou-En Zhu, Murali Krishna Ghatkesar, Chao Zhang, and G. C. A. M. Janssen, "Graphene based piezoresistive pressure sensor," Applied Physics Letters, 102, 2013.
[11] Craig S. Sander, James W. Knutti, James D. Meindl, "A Monolithic Capacitive Pressure Sensor with Pulse-Period Output," IEEE Transactions on Electron Devies, vol. ed-27, no. 5, May, 1980.
[12] Orhan Akar, Tayfun Akin, Khalil Najafi, "A wireless batch sealed absolute capacitive pressure sensor," Sensors and Actuators, A95, pp. 29-38, 2001.
[13] Michael A. Fonseca, Jennifer M. English, Martin von Arx, and Mark G. Allen, "Wireless Micromachined Ceramic Pressure Sensor for High-Temperature Applications," Journal of Microelectromechanical System, vol. 11, no. 4, August, 2002.
[14] Darrin J. Young, Jiangang Du, Christian A. Zorman, and Wen H. Ko, "High-Temperature Single-Crystal 3C-SiC Capacitive Pressure Sensor," IEEE Sensors Journal, vol. 4, no. 4, August, 2004.
[15] K. E. Petersen, F. Pourahmadi, J. Brown, M. Skinner and J. Tudor, "Resonant beam pressure sensor with silicon fusion bonding," Sensors and Actuators, 7, pp. 664, 1991.
[16] D. W. Burns, D. J. Zook, R. D. Horning, W. R. Herb, and H. Guckel, "A digital pressure sensor based on resonant microbeams," Solid-State Sensor and Actuator Workshop, 4, pp. 221, 1994.
[17] J. D. Zook, and D. W. Burns, "Characteristics of polysilicon resonant microbeams," Sensors and Actuators, A35, pp. 51-59, 1992.
[18] Christopher J. Welham, Julian W. Gardner, and John Greenwood, "A laterally driven micromachined resonant pressure sensor," Sensors and Actuators, A52, pp. 86-91, 1996.
[19] D. W. Burns, J. D. Zook, R. D. Horning, W. R. Herb, and H. Guckel, "Sealed-cavity resonant microbeam pressure sensor," Sensors and Actuators, A48, 86, pp. 179, 1995.
[20] Minhang Bao, and Heng Yang, "Squeeze film air damping in MEMS," Sensors and Actuators, A136, 3 , pp. 27, 2007.
[21] W. S. Griffin, H. H. Richardsen, and S. Yamamami, "A study of fluid squeeze film damping," Journal of Basic Engineering, pp. 451-456, 1966.
[22] I. B. Crandall, "The air damped vibrating system: Theoretical calibration of the condenser transmitter," Physics Review 11, pp. 449-460, 1917.
[23] J. J. Blech, "On Isothermal Squeeze Films," J. Tribol., vol. 105, no. 4, pp. 615-620, 1983.
[24] T. Veijola, H. Kuisma, J. Lahdenpera, and T. Ryhanen, "Equivalent-circuit model of the squeezed gas film in a silicon accelerometer," Sensors and Actuators A, Phys., vol. 48, no. 3, pp. 239-248, May 1995.
[25] M. Andrews, I. Harm, and G. Turner, "A comparison of squeeze-film theory with measurements on a microstructure," Sensors and Actuators A, 36, pp. 79-87, 1993.
[26] M. K. Andrews, G. C. Turner, P. D. Harris, and I. M. Harris, "A resonantpressure sensor based on a squeezed film of gas," Sensors and Actuators A, 36, pp. 219-226, 1993.
[27] Vamsy Godthi, Jayaprakash Reddy, and Rudra Pratap, "A Study of Pressure-Dependent Squeeze Film Stiffness as a Resonance Modulator Using Static and Dynamic Measurements," Journal of Microelectromechanical Systems, vol. 24, no. 6, December 2015.
[28] S. S. Rao, "Vibration of continuous systems," John Wiley & Sons, 2007.
[29] Robin J. Dolleman, Dejan Davidovikj, Santiago J. Cartamil-Bueno, Herre S. J. van der Zant, and Peter G. Steeneken, "Graphene Squeeze-Film Pressure Sensors," Nano Lett., 15, pp. 568-571, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *