帳號:guest(3.135.206.98)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李思穎
作者(外文):Li, Sih-Ying
論文名稱(中文):K頻段CMOS四相位壓控振盪器設計
論文名稱(外文):Design of Millimeter-Wave CMOS K-band Quadrature Voltage-Controlled Oscillators
指導教授(中文):劉怡君
指導教授(外文):Liu, Yi-Chun
口試委員(中文):謝秉璇
李俊興
口試委員(外文):Hsieh, Ping-Hsuan
Li, Chun-Hsing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063540
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:83
中文關鍵詞:四相位振盪器壓控振盪器K頻段
外文關鍵詞:QVCOCMOS90nmk-band
相關次數:
  • 推薦推薦:0
  • 點閱點閱:310
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,通訊系統的革新與速度提升成為產業界一項指標,鑒於半導體製造業日漸成熟,高速傳輸資料的需求愈來愈多,電子產品朝著低成本且性能佳的方向進行,操作頻率也逐漸提高以增加操作頻寬,因此射頻(Radio Frequency)收發端系統變得相當重要。
射頻收發系統包含功率放大器(PA)、低雜訊放大器(LNA)、壓控振盪器(VCO)、混頻器(Mixer)和天線(Antenna),此論文針對壓控振盪器的架構特性與改善作討論,此論文操作在K頻帶(18~27 GHz)通訊系統,其應用包含汽車雷達、高速通訊、衛星通訊和生醫影像傳輸等等,受到業界應用上的青睞。
此論文探討了三個四相位壓控振盪器設計,使用90奈米互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor, CMOS)製程實現電路設計。第一個設計運用串接耦合架構達到四相位,振盪在22.4 GHz具有0.8 dBm的功率與-98.9 dBc/Hz的相位雜訊,且具有3.5%的調頻範圍。在第二個設計中,運用三組交叉耦合對達到四相位效果,其振盪頻率為24 GHz,輸出功率和相位雜訊分別為-0.8 dBm和-102.4 dBc/Hz,具有10%的調頻範圍。最後一個設計使用電流再利用的架構可降低整體電路消耗的功率,根據模擬結果,振盪在23 GHz,消耗功率和相位雜訊分別為4.3 mW和-97.6 dBc/Hz。
Recently, the increasing demand for high-data-rate communication system becomes a main target for the device manufacturers. Thanks to the mature semiconductor manufacturing, more and more consumer electronics become inexpensive and can achieve high performance. Also, the operating frequency shifts up for wider bandwidth for even higher speed operation. Therefore, radio frequency (RF) transceiver system becomes significant.
RF transceiver front-ends consist of power amplifier (PA), low noise-amplifier (LNA), voltage-controlled oscillator (VCO), mixers, and antenna. In this thesis, the goal is to improve the performance of VCO that operates in K-band (18 to 27 GHz). Various applications such as collision avoidance systems, satellite communications, and radar speed guns utilize in this frequency band.
In this thesis, three quadrature voltage-controlled oscillators (QVCO) are proposed with different structures in a 90-nm CMOS process. In work I, by using series-coupled structure, quadrature signals are obtained. The oscillation frequency and output power are 22.4 GHz and 0.8 dBm with 3.5% tuning range and -98.9 dBc/Hz phase noise at 1-MHz offset frequency. In work II, three cross-coupled pairs are used to generate quadrature signals. It oscillates at 24 GHz with 10% tuning range. The output power and phase noise are -0.8 dBm and -102.4 dBc/Hz, respectively. The last work uses the transformer-feedback current-reused structure to reduce the power consumption. The operation frequency is 23 GHz with 4.3 mW of power consumption and -97.6 dBc/Hz phase noise at 1-MHz offset frequency.
摘要 i
ABSTRACT ii
Contents i
List of Figures iv
List of Table viii
Chapter 1 Introduction 1
1.1. Introduction to Millimeter-Wave 1
1.2. K-band Standards and Applications 2
1.3. Thesis Organization 3
Chapter 2 Overview of Oscillator 5
2.1. Introduction 5
2.2. Oscillator Fundamentals 6
2.2.1 Feedback System of Oscillators [4] 6
2.2.2 LC-Tank Oscillator 7
2.3. Important Parameters for Oscillator 11
2.3.1 Frequency 11
2.3.2 Output Amplitude 12
2.3.3 Phase Noise 14
2.3.4 Power Dissipation 20
Chapter 3 Passive and Active Components 21
3.1. 90-nm CMOS Process 21
3.2. Active Device 24
3.3. Passive Device 26
3.3.1 Inductor 26
3.3.2 Transformer 29
3.3.3 MOS Varactor 33
Chapter 4 A Tunable Quadrature Voltage-Controlled Oscillator at K-band 35
4.1. Literature Survey 35
4.1.1 Quadrature Coupling Methods 35
4.1.2 Quality Factor Improvement 39
4.1.3 Capacitive Feedback 41
4.2. Circuit Design 44
4.2.1 Design Flow 44
4.2.2 Design Parameters 45
4.3. Measurement Results 49
4.4. Discussion and Conclusion 52
Chapter 5 A Three-Cross-Coupled Quadrature Oscillator at K-Band 54
5.1. Literature Survey 54
5.1.1 Generate Quadrature Signals 54
5.1.2 Capacitance-Splitting Technique 56
5.2. Circuit Design 58
5.2.1 Design Parameters 58
5.3. Measurement Results of Work II 62
5.3.1 Measurement Results 63
5.4. Discussion and Conclusion 65
Chapter 6 A Current-Reused Quadrature Voltage-controlled Oscillator 67
6.1. Literature Survey 67
6.1.1 Current-Reused Structure 67
6.2. Circuit Design 69
6.2.1 Design Parameters 69
6.3. Simulation Results 74
6.4. Discussion and Conclusion 77
Chapter 7 Conclusion and Future Work 79
Reference 81

[1] ITU-R, "Attenuation by atmospheric gases," in ITU-R Rec, Geneva, 2005, pp. 676-6.
[2] FCC, "Use of Spectrum Bands Above 24 GHz For Mobile Radio Services, et al," FCC 16-89, 2016.
[3] ETSI, "Broadband Radio Access Networks (BRAN); 60 GHz Multiple-Gigabit WAS/RLAN Systems; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive," ETSI EN 302 567 v2.0.22, 2016.
[4] B. Razavi, RF microelectronics, 2 ed., Prentice Hall, 2012.
[5] D. B. Leeson, "A simple model of feedback oscillator noise spectrum," Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, Fed 1966.
[6] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb 1998.
[7] J. Borremans, M. Dehan, K. Scheir, M. Kuijk and P. Wambacq, "VCO design for 60 GHz applications using differential shielded inductors in 0.13 μm CMOS," 2008 IEEE Radio Frequency Integrated Circuits Symposium, pp. 135-138, 2008.
[8] H.-H. Hsieh and L.-H. Lu, "A low-phase-noise K-band CMOS VCO," IEEE Microwave and Wireless Components Letters, vol. 16, no. 10, pp. 552-554, Oct 2006.
[9] M. H. Li, Y. H. Liao and H. Y. Chang, "A K-band low power high accuracy quadrature VCO using gate-modulated coupling and transformer feedback technique," 2014 Asia-Pacific Microwave Conference, pp. 895-897, 2014.
[10] T. D. Loveless, S. Jagannathan, E. X. Zhang, D. M. Fleetwood, J. S. Kauppila, T. D. Haeffner and L. W. Massengill, "Combined Effects of Total Ionizing Dose and Temperature on a K-Band Quadrature LC-Tank VCO in a 32 nm CMOS SOI Technology," IEEE Transactions on Nuclear Science, vol. 64, no. 1, pp. 204-211, Jan 2017.
[11] M. MarkusTörmänen and H. Sjöland, "A 24-GHz quadrature receiver front-end in 90-nm CMOS," 2009 Asia Pacific Microwave Conference, pp. 1152-1155, 2009.
[12] H. Y. Chang, C. H. Lin, Y. C. Liu, Y. L. Yeh, K. Chen and S. H. Wu, "65-nm CMOS Dual-Gate Device for Ka-Band Broadband Low-Noise Amplifier and High-Accuracy Quadrature Voltage-Controlled Oscillator," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 6, pp. 2402-2413, June 2013.
[13] P. Y. Wang, Y. C. Chang, K. H. Chuang, D. C. Chang and S. S. H. Hsu, "A low phase-noise 24GHz CMOS quadrature-VCO using PMOS-source-follower coupling technique," 2014 44th European Microwave Conference, Rome, pp. 572-575, 2014.
[14] T. Siriburanon, T. Sato, A. Musa, W. Deng, K. Okada and A. Matsuzawa, "A 20 GHz push-push voltage-controlled oscillator for a 60 GHz frequency synthesizer," 2012 Asia Pacific Microwave Conference Proceedings, pp. 205-207, 2012.
[15] L. Li, P. Reynaert and M. S. J. Steyaert, "A 60-GHz CMOS VCO Using Capacitance-Splitting and Gate–Drain Impedance-Balancing Techniques," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 2, pp. 406-413, Feb 2011.
[16] H. Y. Chang and Y. T. Chiu, "K-Band CMOS Differential and Quadrature Voltage-Controlled Oscillators for Low Phase-Noise and Low-Power Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp. 46-59, Jan 2012.
[17] M. Jalalifar and G. S. Byun, "A Current-Reused Back-Gate Coupling QVCO Using Transformer Feedback Structure," IEEE Microwave and Wireless Components Letters, vol. 26, no. 7, pp. 534-536, July 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *