|
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, 2004. [2] Cameron J Shearer, Ashley D Slattery, Andrew J Stapleton, Joseph G Shapter, and Christopher T Gibson. Accurate thickness measurement of graphene. Nanotechnology, 27(12):125704, 2016. [3] Raghunath Murali, Yinxiao Yang, Kevin Brenner, Thomas Beck, and James D. Meindl. Breakdown current density of graphene nanoribbons. Applied Physics Letters, 94(24):243114, 2009. [4] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim. Fine structure constant defines visual transparency of graphene. Science, 320(5881):1308–1308, 2008. [5] Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, and James Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887): 385–388, 2008. [6] Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau. Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3):902–907, 2008. PMID: 18284217. [7] Hengameh Hanaei, M. Khalaji Assadi, and R. Saidur. Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (cnts) into solar cells: A review. Renewable and Sustainable Energy Reviews, 59:620 – 635, 2016. [8] Meryl D. Stoller, Sungjin Park, Yanwu Zhu, Jinho An, and Rodney S. Ruoff. Graphene-based ultracapacitors. Nano Letters, 8(10):3498–3502, 2008. PMID: 18788793. [9] International technology roadmap for semiconductors 2.0 2015 edition interconnect. ITRS, 2015. [10] A. Christou. Electromigration and electronic device degradation. Wiley-Interscience, 1994. [11] J. D. Plummer. Silicon vlsi technology: Fundamentals, practice and modeling. 2000. [12] Yan Pan, Yuhong Liu, Tongqing Wang, and Xinchun Lu. Effect of a cu seed layer on electroplated cu film. Microelectronic Engineering, 105:18 – 24, 2013. [13] M. Setton, J. Van der Spiegel, and B. Rothman. Copper silicide formation by rapid thermal processing and induced room�temperature si oxide growth. Applied Physics Letters, 57(4):357–359, 1990. [14] H. Wendt, H. Cerva, V. Lehmann, and W. Pamler. Impact of copper contamination on the quality of silicon oxides. Journal of Applied Physics, 65(6):2402–2405, 1989. [15] Min Sung Kim Muhammad Khan. Damascene process and chemical mechanical planarization. 2011. [16] W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt. Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. Journal of Applied Physics, 97(2):023706, 2005. [17] Z. Tőkei, I. Ciofi, P. Roussel, P. Debacker, P. Raghavan, M. H. van der Veen, N. Jourdan, C. J. Wilson, V. V. Gonzalez, C. Adelmann, L. Wen, K. Croes, O. V. P. K. Moors, M. Krishtab, S. Armini, and J. Bömmels. On-chip interconnect trends, challenges and solutions: how to keep rc and reliability under control. IEEE, 2016. [18] P. Josh Wolf. Overview of dual damascene cu low-k interconnect. Technical report, International Sematech, 2706 Montopolis Drive, Austin TX 78741; Intel, Portland, OR, 2003. [19] Ying Feng and Susan L. Burkett. Fabrication and electrical performance of through silicon via interconnects filled with a copper/carbon nanotube composite. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 33(2):022004, 2015. [20] International roadmap for devices and systems 2016 edition. IEEE, 2016. [21] F. W. Mont, X. Zhang, W. Wang, J. J. Kelly, T. E. Standaert, R. Quon, and E. T. Ryan. Cobalt interconnect on same copper barrier process integration at the 7nm node. 2017 IEEE International Interconnect Technology Conference (IITC), 2017. [22] N. Bekiaris, Z. Wu, H. Ren, M. Naik, J. H. Park, M. Lee, T. H. Ha, W. Hou, J. R. Bakke, M. Gage, Y. Wang, and J. Tang. Cobalt fill for advanced interconnects. 2017 IEEE International Interconnect Technology Conference (IITC), 2017. [23] P. R. Wallace. The band theory of graphite. Phys. Rev., 71:622–634, May 1947. [24] H. Kosina M. Pourfath. Numerical study of quantum transport in carbon nanotubebased transistors. 2011. [25] Mei Yang Jun Yao, Yu Sun and Yixiang Duan. Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. Journal of Materials Chemistry, 2012. [26] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat Mater, 6(3):183–191, March 2007. [27] L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus. Raman spectroscopy in graphene. Physics Reports, 473(5):51 – 87, 2009. [28] L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, and M. A. Pimenta. General equation for the determination of the crystallite size la of nanographite by raman spectroscopy. Applied Physics Letters, 88(16):163106, 2006. [29] Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Cécile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, and Walt A. de Heer. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777):1191–1196, 2006. [30] Peter Sutter. Epitaxial graphene: How silicon leaves the scene. Nat Mater, 8(3): 171–172, March 2009. [31] Sungjin Park and Rodney S. Ruoff. Chemical methods for the production of graphenes. Nat Nano, 4(4):217–224, April 2009. [32] Yongchao Si and Edward T. Samulski. Synthesis of water soluble graphene. Nano Letters, 8(6):1679–1682, 2008. PMID: 18498200. [33] Sungjin Park, Jinho An, Richard D. Piner, Inhwa Jung, Dongxing Yang, Aruna Velamakanni, SonBinh T. Nguyen, and Rodney S. Ruoff. Aqueous suspension and characterization of chemically modified graphene sheets. Chemistry of Materials, 20(21):6592–6594, 2008. [34] Yenny Hernandez, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun, Sukanta De, T. McGovernI., Brendan Holland, Michele Byrne, Yurii K. Gun’Ko,John J. Boland, Peter Niraj, Georg Duesberg, Satheesh Krishnamurthy, Robbie Goodhue, John Hutchison, Vittorio Scardaci, Andrea C. Ferrari, and Jonathan N. Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nano, 3(9):563–568, September 2008. [35] Heyong He, Jacek Klinowski, Michael Forster, and Anton Lerf. A new structural model for graphite oxide. Chemical Physics Letters, 287(1):53 – 56, 1998. [36] Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen, and Shin-Shem Pei. Graphene segregated on ni surfaces and transferred to insulators. Applied Physics Letters, 93(11):113103, 2008. [37] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, and Rodney S. Ruoff. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932):1312–1314, 2009. [38] Xiaozhi Xu, Zhihong Zhang, Lu Qiu, Jianing Zhuang, Liang Zhang, Huan Wang, Chongnan Liao, Huading Song, Ruixi Qiao, Peng Gao, Zonghai Hu, Lei Liao, Zhimin Liao, Dapeng Yu, Enge Wang, Feng Ding, Hailin Peng, and Kaihui Liu. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat Nano, 11(11):930–935, November 2016. [39] Zhancheng Li, Ping Wu, Chenxi Wang, Xiaodong Fan, Wenhua Zhang, Xiaofang Zhai, Changgan Zeng, Zhenyu Li, Jinlong Yang, and Jianguo Hou. Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano, 5(4):3385–3390, 2011. PMID: 21438574. [40] Bin Zhang, Wi Hyoung Lee, Richard Piner, Iskandar Kholmanov, Yaping Wu, Huifeng Li, Hengxing Ji, and Rodney S Ruoff. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano, 6(3):2471–2476, 2012. PMID: 22339048. [41] Golap Kalita, Muhammed E. Ayhan, Subash Sharma, Sachin M. Shinde, Dilip Ghimire, Koichi Wakita, Masayoshi Umeno, and Masaki Tanemura. Low temperature deposited graphene by surface wave plasma cvd as effective oxidation resistive barrier. Corrosion Science, 78:183 – 187, 2014. [42] Ivan Vlassiouk, Murari Regmi, Pasquale Fulvio, Sheng Dai, Panos Datskos, Gyula Eres, and Sergei Smirnov. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano, 5(7):6069–6076, 2011. PMID: 21707037. [43] Xiuyun Zhang, Lu Wang, John Xin, Boris I. Yakobson, and Feng Ding. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. Journal of the American Chemical Society, 136(8):3040–3047, 2014. PMID: 24499486. [44] Maria Losurdo, Maria Michela Giangregorio, Pio Capezzuto, and Giovanni Bruno. Graphene cvd growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys., 13:20836–20843, 2011. [45] Jens Lienig. Interconnect and current density stress: An introduction to electromigration-aware design. In Proceedings of the 2005 International Workshop on System Level Interconnect Prediction, SLIP ’05, pages 81–88, New York, NY, USA, 2005. ACM. [46] J. R. Black. Electromigration – a brief survey and some recent results. IEEE Transactions on Electron Devices, 1969. [47] J.R Lloyd, J Clemens, and R Snede. Copper metallization reliability. Microelectronics Reliability, 39(11):1595 – 1602, 1999. [48] Dukryel Kwon, Hyunah Park, and Chongmu Lee. Electromigration resistancerelated microstructural change with rapid thermal annealing of electroplated copper films. Thin Solid Films, 475(1):58 – 62, 2005. Asian-European International Conference on Plasma Surface Engineering 2003 Proceedings of the 4th Asian-European International Conference on Plasma Surface Engineering. [49] M. Shatzkes and J. R. Lloyd. A model for conductor failure considering diffusion concurrently with electromigration resulting in a current exponent of 2. Journal of Applied Physics, 59(11):3890–3893, 1986. [50] J. J. Clement and J. R. Lloyd. Numerical investigations of the electromigration boundary value problem. Journal of Applied Physics, 71(4):1729–1731, 1992. [51] R. Kirchheim and U. Kaeber. Atomistic and computer modeling of metallization failure of integrated circuits by electromigration. Journal of Applied Physics, 70(1): 172–181, 1991. [52] Chang Goo Kang, Sung Kwan Lim, Sangchul Lee, Sang Kyung Lee, Chunhum Cho, Young Gon Lee, Hyeon Jun Hwang, Younghun Kim, Ho Jun Choi, Sun Hee Choe, Moon-Ho Ham, and Byoung Hun Lee. Effects of multi-layer graphene capping on cu interconnects. Nanotechnology, 24(11):115707, 2013. [53] Chao-Hui Yeh, Henry Medina, Chun-Chieh Lu, Kun-Ping Huang, Zheng Liu, Kazu Suenaga, and Po-Wen Chiu. Scalable graphite/copper bishell composite for highperformance interconnects. ACS Nano, 8(1):275–282, 2014. PMID: 24369717. [54] W. S. Zhao, D. W. Wang, G. Wang, and W. Y. Yin. Electrical modeling of on-chip cu-graphene heterogeneous interconnects. IEEE Electron Device Letters, 2015. [55] P. S. Raja, R. J. Daniel, and R. M. Thomas. Graphene interconnect for nano scale circuits. IEEE, 2014. [56] A. Contino, I. Ciofi, M. Politou, D. Verkest, D. Mocuta, B. Sorée, and G. Groeseneken. Modeling of graphene for interconnect applications. IEEE, 2016. [57] M. Politou, Xiangyu Wu, A. Contino, B. Soree, C. Huyghebaert, D. Lin, I. Radu, Z. Tokei, and I. Asselberghs. Multi-layer graphene interconnect. IEEE, 2016. [58] N. C. Wang, S. Sinha, B. Cline, C. D. English, G. Yeric, and E. Pop. Replacing copper interconnects with graphene at a 7-nm node. IEEE, 2017. [59] X. Chen, D. H. Seo, S. Seo, H. Chung, and H. S. P. Wong. Graphene interconnect lifetime under high current stress. IEEE, 2012. [60] Ruchit Mehta, Sunny Chugh, and Zhihong Chen. Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires. Nano Letters, 15(3):2024– 2030, 2015. PMID: 25650635. [61] R. Zhang, W. S. Zhao, J. Hu, and W. Y. Yin. Electrothermal characterization of multilevel cu-graphene heterogeneous interconnects in the presence of an electrostatic discharge (esd). IEEE Transactions on Nanotechnology, 2015. [62] Jacob D. Teeter, Paulo S. Costa, Mohammad Mehdi Pour, Daniel P. Miller, Eva Zurek, Axel Enders, and Alexander Sinitskii. Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on cu(111). Chem. Commun., 53:8463–8466, 2017. [63] Konstantin A. Simonov, Nikolay A. Vinogradov, Alexander S. Vinogradov, Alexander V. Generalov, Elena M. Zagrebina, Gleb I. Svirskiy, Attilio A. Cafolla, Thomas Carpy, John P. Cunniffe, Tetsuya Taketsugu, Andrey Lyalin, Nils Mårtensson, and Alexei B. Preobrajenski. From graphene nanoribbons on cu(111) to nanographene on cu(110): Critical role of substrate structure in the bottom-up fabrication strategy. ACS Nano, 9(9):8997–9011, 2015. PMID: 26301684. [64] K M Mohsin, Ashok Srivastava, Ashwani K Sharma, Clay Mayberry, and Md S Fahad. Current transport in graphene/copper hybrid nano ribbon interconnect: A first principle study. ECS Transactions, 2016. [65] Ya-Wen Su, Cen-Shawn Wu, Chih-Hua Liu, Hung-Yi Lin, and Chii-Dong Chen. Hybrid stacking structure of electroplated copper onto graphene for future interconnect applications. Applied Physics Letters, 107(9):093105, 2015. 65 |