帳號:guest(3.22.248.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林宗儒
作者(外文):Lin, Tsung-Ju
論文名稱(中文):感應耦合電漿輔助化學氣相沉積石墨烯輔助奈米銅內連線之電性研究與分析
論文名稱(外文):Electrical Properties and Analysis of ICP-CVD Graphene on Copper Interconnects
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):張文豪
李奎毅
口試委員(外文):Chang, Wen-Hao
Lee, Kuei-Yi 
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063534
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:65
中文關鍵詞:內連線化學氣相沉積電流密度電阻
外文關鍵詞:InterconnectCVDresistancecurrent density
相關次數:
  • 推薦推薦:0
  • 點閱點閱:852
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文成功利用感應耦合電漿輔助化學氣相沉積法在數十奈米內連線上成長石墨烯。藉由此一技術,在300度製程下可成長石墨烯,奈米內連線可保持穩定而不損壞。直接沉積石墨烯於內連線上,有助於避免因轉移石墨烯使內連線表面不平整。石墨烯作為一覆蓋層,可減緩逐漸微縮的銅內連線表面散射;其電阻率最多可降低20%以上,電流密度更上升了30%以上。石墨烯改質內連線對於未來製程降低阻值以及提升電流密度將會是個有潛力的一門技術。
In this thesis, we succeed in growing graphene on interconnect by using ICP-CVD. nm-interconnect can be stable under 300 celsius fabrication. Moreover, it's more conformal than transferring graphene on interconnect. Graphene as a capping layer, it can reduce surface scattering of electrons, and resistivity of interconnect has a reduction of 20%. Max current density rises 30%. It's an essential technique to improve interconnect electrical characteristics.
論文摘要.................................................. I
目錄..................................................... IV
第一章 序論........................................... 1
1.1 石墨烯的發展史 . . . . .. . . . . . . . . . . . . . . . . . . 1
1.2 內連線的結構與材料製程演進 . . . . . . . . . . . . . . . . . . 3
1.2.1 大馬士革製程. . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 元件微縮 . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . 9
第二章 石墨烯的物性與成長技術............................ 11
2.1 石墨烯的晶體結構與電子能帶 . . . . . . . . . . . . . . . . . . 11
2.2 石墨烯的拉曼光譜 . . . . . . . . . . . . . . . . . . . . . . 15
2.3 石墨烯成長的相關技術. . . . . . . . . . . . . . . . . . . . . 20
第三章 感應耦合電漿輔助化學氣相沉積法..................... 23
3.1 電漿簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 感應耦合電漿輔助化學氣相沉積系統 . . . . . . . . . . . . . . 24
3.3 成長石墨烯的參數對銅之影響 . . . . . .. . . . . . . . . . . . 27
3.3.1 爐心溫度 . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 射頻功率 . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 氫氣流量. . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.4 碳源多寡 . . . . . . . . . . . . . . . . . . . . . . . . . 30
第四章 內連線的電致遷移與量測............................. 33
4.1 電致遷移的理論分析 . . . . . . .. . . . . . . . . . . . . . . 33
4.2 銅內連線之電性量測. . . . . . . . . . . . . . . . . . . . . . 38
第五章 溝渠式石墨烯覆蓋製程改質內連線...................... 43
5.1 改質後銅內連線之電性量測. . . . . . . . . . . . . . . . . . . 43
5.1.1 碳源 A 成長石墨烯. . . . . . . . . . . . . . . . . . . . . 44
5.1.2 碳源 B 成長石墨烯. . . . . . . . . . . . . . . . . . . . . 47
5.2 石墨烯改質銅內連線的機制探討 . . . . . . . .. . . . . . . . . 50
第六章結論與展望......................................... 55
參考文獻................................................ 57
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon
films. Science, 306(5696):666–669, 2004.
[2] Cameron J Shearer, Ashley D Slattery, Andrew J Stapleton, Joseph G Shapter, and
Christopher T Gibson. Accurate thickness measurement of graphene. Nanotechnology,
27(12):125704, 2016.
[3] Raghunath Murali, Yinxiao Yang, Kevin Brenner, Thomas Beck, and James D.
Meindl. Breakdown current density of graphene nanoribbons. Applied Physics Letters,
94(24):243114, 2009.
[4] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber,
N. M. R. Peres, and A. K. Geim. Fine structure constant defines visual transparency
of graphene. Science, 320(5881):1308–1308, 2008.
[5] Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, and James Hone. Measurement of the
elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):
385–388, 2008.
[6] Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne
Teweldebrhan, Feng Miao, and Chun Ning Lau. Superior thermal conductivity of
single-layer graphene. Nano Letters, 8(3):902–907, 2008. PMID: 18284217.
[7] Hengameh Hanaei, M. Khalaji Assadi, and R. Saidur. Highly efficient antireflective
and self-cleaning coatings that incorporate carbon nanotubes (cnts) into solar cells:
A review. Renewable and Sustainable Energy Reviews, 59:620 – 635, 2016.
[8] Meryl D. Stoller, Sungjin Park, Yanwu Zhu, Jinho An, and Rodney S. Ruoff.
Graphene-based ultracapacitors. Nano Letters, 8(10):3498–3502, 2008. PMID:
18788793.
[9] International technology roadmap for semiconductors 2.0 2015 edition interconnect.
ITRS, 2015.
[10] A. Christou. Electromigration and electronic device degradation. Wiley-Interscience,
1994.
[11] J. D. Plummer. Silicon vlsi technology: Fundamentals, practice and modeling. 2000.
[12] Yan Pan, Yuhong Liu, Tongqing Wang, and Xinchun Lu. Effect of a cu seed layer
on electroplated cu film. Microelectronic Engineering, 105:18 – 24, 2013.
[13] M. Setton, J. Van der Spiegel, and B. Rothman. Copper silicide formation by rapid
thermal processing and induced room�temperature si oxide growth. Applied Physics
Letters, 57(4):357–359, 1990.
[14] H. Wendt, H. Cerva, V. Lehmann, and W. Pamler. Impact of copper contamination
on the quality of silicon oxides. Journal of Applied Physics, 65(6):2402–2405, 1989.
[15] Min Sung Kim Muhammad Khan. Damascene process and chemical mechanical
planarization. 2011.
[16] W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt. Comprehensive
study of the resistivity of copper wires with lateral dimensions of 100 nm
and smaller. Journal of Applied Physics, 97(2):023706, 2005.
[17] Z. Tőkei, I. Ciofi, P. Roussel, P. Debacker, P. Raghavan, M. H. van der Veen, N. Jourdan,
C. J. Wilson, V. V. Gonzalez, C. Adelmann, L. Wen, K. Croes, O. V. P. K.
Moors, M. Krishtab, S. Armini, and J. Bömmels. On-chip interconnect trends, challenges
and solutions: how to keep rc and reliability under control. IEEE, 2016.
[18] P. Josh Wolf. Overview of dual damascene cu low-k interconnect. Technical report,
International Sematech, 2706 Montopolis Drive, Austin TX 78741; Intel, Portland,
OR, 2003.
[19] Ying Feng and Susan L. Burkett. Fabrication and electrical performance of through
silicon via interconnects filled with a copper/carbon nanotube composite. Journal of
Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials,
Processing, Measurement, and Phenomena, 33(2):022004, 2015.
[20] International roadmap for devices and systems 2016 edition. IEEE, 2016.
[21] F. W. Mont, X. Zhang, W. Wang, J. J. Kelly, T. E. Standaert, R. Quon, and E. T.
Ryan. Cobalt interconnect on same copper barrier process integration at the 7nm
node. 2017 IEEE International Interconnect Technology Conference (IITC), 2017.
[22] N. Bekiaris, Z. Wu, H. Ren, M. Naik, J. H. Park, M. Lee, T. H. Ha, W. Hou, J. R.
Bakke, M. Gage, Y. Wang, and J. Tang. Cobalt fill for advanced interconnects. 2017
IEEE International Interconnect Technology Conference (IITC), 2017.
[23] P. R. Wallace. The band theory of graphite. Phys. Rev., 71:622–634, May 1947.
[24] H. Kosina M. Pourfath. Numerical study of quantum transport in carbon nanotubebased
transistors. 2011.
[25] Mei Yang Jun Yao, Yu Sun and Yixiang Duan. Chemistry, physics and biology of
graphene-based nanomaterials: new horizons for sensing, imaging and medicine.
Journal of Materials Chemistry, 2012.
[26] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat Mater, 6(3):183–191,
March 2007.
[27] L.M. Malard, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus. Raman spectroscopy
in graphene. Physics Reports, 473(5):51 – 87, 2009.
[28] L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio,
L. N. Coelho, R. Magalhães-Paniago, and M. A. Pimenta. General equation for
the determination of the crystallite size la of nanographite by raman spectroscopy.
Applied Physics Letters, 88(16):163106, 2006.
[29] Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Cécile Naud,
Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad,
Phillip N. First, and Walt A. de Heer. Electronic confinement and coherence in
patterned epitaxial graphene. Science, 312(5777):1191–1196, 2006.
[30] Peter Sutter. Epitaxial graphene: How silicon leaves the scene. Nat Mater, 8(3):
171–172, March 2009.
[31] Sungjin Park and Rodney S. Ruoff. Chemical methods for the production of
graphenes. Nat Nano, 4(4):217–224, April 2009.
[32] Yongchao Si and Edward T. Samulski. Synthesis of water soluble graphene. Nano
Letters, 8(6):1679–1682, 2008. PMID: 18498200.
[33] Sungjin Park, Jinho An, Richard D. Piner, Inhwa Jung, Dongxing Yang, Aruna Velamakanni,
SonBinh T. Nguyen, and Rodney S. Ruoff. Aqueous suspension and
characterization of chemically modified graphene sheets. Chemistry of Materials,
20(21):6592–6594, 2008.
[34] Yenny Hernandez, Valeria Nicolosi, Mustafa Lotya, Fiona M. Blighe, Zhenyu Sun,
Sukanta De, T. McGovernI., Brendan Holland, Michele Byrne, Yurii K. Gun’Ko,John J. Boland, Peter Niraj, Georg Duesberg, Satheesh Krishnamurthy, Robbie
Goodhue, John Hutchison, Vittorio Scardaci, Andrea C. Ferrari, and Jonathan N.
Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite.
Nat Nano, 3(9):563–568, September 2008.
[35] Heyong He, Jacek Klinowski, Michael Forster, and Anton Lerf. A new structural
model for graphite oxide. Chemical Physics Letters, 287(1):53 – 56, 1998.
[36] Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen, and Shin-Shem Pei.
Graphene segregated on ni surfaces and transferred to insulators. Applied Physics
Letters, 93(11):113103, 2008.
[37] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang,
Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee,
Luigi Colombo, and Rodney S. Ruoff. Large-area synthesis of high-quality and
uniform graphene films on copper foils. Science, 324(5932):1312–1314, 2009.
[38] Xiaozhi Xu, Zhihong Zhang, Lu Qiu, Jianing Zhuang, Liang Zhang, Huan Wang,
Chongnan Liao, Huading Song, Ruixi Qiao, Peng Gao, Zonghai Hu, Lei Liao,
Zhimin Liao, Dapeng Yu, Enge Wang, Feng Ding, Hailin Peng, and Kaihui Liu.
Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply.
Nat Nano, 11(11):930–935, November 2016.
[39] Zhancheng Li, Ping Wu, Chenxi Wang, Xiaodong Fan, Wenhua Zhang, Xiaofang
Zhai, Changgan Zeng, Zhenyu Li, Jinlong Yang, and Jianguo Hou. Low-temperature
growth of graphene by chemical vapor deposition using solid and liquid carbon
sources. ACS Nano, 5(4):3385–3390, 2011. PMID: 21438574.
[40] Bin Zhang, Wi Hyoung Lee, Richard Piner, Iskandar Kholmanov, Yaping Wu,
Huifeng Li, Hengxing Ji, and Rodney S Ruoff. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS
Nano, 6(3):2471–2476, 2012. PMID: 22339048.
[41] Golap Kalita, Muhammed E. Ayhan, Subash Sharma, Sachin M. Shinde, Dilip
Ghimire, Koichi Wakita, Masayoshi Umeno, and Masaki Tanemura. Low temperature
deposited graphene by surface wave plasma cvd as effective oxidation resistive
barrier. Corrosion Science, 78:183 – 187, 2014.
[42] Ivan Vlassiouk, Murari Regmi, Pasquale Fulvio, Sheng Dai, Panos Datskos, Gyula
Eres, and Sergei Smirnov. Role of hydrogen in chemical vapor deposition growth of
large single-crystal graphene. ACS Nano, 5(7):6069–6076, 2011. PMID: 21707037.
[43] Xiuyun Zhang, Lu Wang, John Xin, Boris I. Yakobson, and Feng Ding. Role of
hydrogen in graphene chemical vapor deposition growth on a copper surface. Journal
of the American Chemical Society, 136(8):3040–3047, 2014. PMID: 24499486.
[44] Maria Losurdo, Maria Michela Giangregorio, Pio Capezzuto, and Giovanni Bruno.
Graphene cvd growth on copper and nickel: role of hydrogen in kinetics and structure.
Phys. Chem. Chem. Phys., 13:20836–20843, 2011.
[45] Jens Lienig. Interconnect and current density stress: An introduction to
electromigration-aware design. In Proceedings of the 2005 International Workshop
on System Level Interconnect Prediction, SLIP ’05, pages 81–88, New York, NY,
USA, 2005. ACM.
[46] J. R. Black. Electromigration – a brief survey and some recent results. IEEE Transactions
on Electron Devices, 1969.
[47] J.R Lloyd, J Clemens, and R Snede. Copper metallization reliability. Microelectronics
Reliability, 39(11):1595 – 1602, 1999.
[48] Dukryel Kwon, Hyunah Park, and Chongmu Lee. Electromigration resistancerelated
microstructural change with rapid thermal annealing of electroplated copper
films. Thin Solid Films, 475(1):58 – 62, 2005. Asian-European International Conference
on Plasma Surface Engineering 2003 Proceedings of the 4th Asian-European
International Conference on Plasma Surface Engineering.
[49] M. Shatzkes and J. R. Lloyd. A model for conductor failure considering diffusion
concurrently with electromigration resulting in a current exponent of 2. Journal of
Applied Physics, 59(11):3890–3893, 1986.
[50] J. J. Clement and J. R. Lloyd. Numerical investigations of the electromigration
boundary value problem. Journal of Applied Physics, 71(4):1729–1731, 1992.
[51] R. Kirchheim and U. Kaeber. Atomistic and computer modeling of metallization
failure of integrated circuits by electromigration. Journal of Applied Physics, 70(1):
172–181, 1991.
[52] Chang Goo Kang, Sung Kwan Lim, Sangchul Lee, Sang Kyung Lee, Chunhum Cho,
Young Gon Lee, Hyeon Jun Hwang, Younghun Kim, Ho Jun Choi, Sun Hee Choe,
Moon-Ho Ham, and Byoung Hun Lee. Effects of multi-layer graphene capping on
cu interconnects. Nanotechnology, 24(11):115707, 2013.
[53] Chao-Hui Yeh, Henry Medina, Chun-Chieh Lu, Kun-Ping Huang, Zheng Liu, Kazu
Suenaga, and Po-Wen Chiu. Scalable graphite/copper bishell composite for highperformance
interconnects. ACS Nano, 8(1):275–282, 2014. PMID: 24369717.
[54] W. S. Zhao, D. W. Wang, G. Wang, and W. Y. Yin. Electrical modeling of on-chip
cu-graphene heterogeneous interconnects. IEEE Electron Device Letters, 2015.
[55] P. S. Raja, R. J. Daniel, and R. M. Thomas. Graphene interconnect for nano scale
circuits. IEEE, 2014.
[56] A. Contino, I. Ciofi, M. Politou, D. Verkest, D. Mocuta, B. Sorée, and G. Groeseneken.
Modeling of graphene for interconnect applications. IEEE, 2016.
[57] M. Politou, Xiangyu Wu, A. Contino, B. Soree, C. Huyghebaert, D. Lin, I. Radu,
Z. Tokei, and I. Asselberghs. Multi-layer graphene interconnect. IEEE, 2016.
[58] N. C. Wang, S. Sinha, B. Cline, C. D. English, G. Yeric, and E. Pop. Replacing
copper interconnects with graphene at a 7-nm node. IEEE, 2017.
[59] X. Chen, D. H. Seo, S. Seo, H. Chung, and H. S. P. Wong. Graphene interconnect
lifetime under high current stress. IEEE, 2012.
[60] Ruchit Mehta, Sunny Chugh, and Zhihong Chen. Enhanced electrical and thermal
conduction in graphene-encapsulated copper nanowires. Nano Letters, 15(3):2024–
2030, 2015. PMID: 25650635.
[61] R. Zhang, W. S. Zhao, J. Hu, and W. Y. Yin. Electrothermal characterization of multilevel
cu-graphene heterogeneous interconnects in the presence of an electrostatic
discharge (esd). IEEE Transactions on Nanotechnology, 2015.
[62] Jacob D. Teeter, Paulo S. Costa, Mohammad Mehdi Pour, Daniel P. Miller, Eva
Zurek, Axel Enders, and Alexander Sinitskii. Epitaxial growth of aligned atomically
precise chevron graphene nanoribbons on cu(111). Chem. Commun., 53:8463–8466,
2017.
[63] Konstantin A. Simonov, Nikolay A. Vinogradov, Alexander S. Vinogradov, Alexander
V. Generalov, Elena M. Zagrebina, Gleb I. Svirskiy, Attilio A. Cafolla, Thomas
Carpy, John P. Cunniffe, Tetsuya Taketsugu, Andrey Lyalin, Nils Mårtensson, and
Alexei B. Preobrajenski. From graphene nanoribbons on cu(111) to nanographene
on cu(110): Critical role of substrate structure in the bottom-up fabrication strategy.
ACS Nano, 9(9):8997–9011, 2015. PMID: 26301684.
[64] K M Mohsin, Ashok Srivastava, Ashwani K Sharma, Clay Mayberry, and Md S
Fahad. Current transport in graphene/copper hybrid nano ribbon interconnect: A
first principle study. ECS Transactions, 2016.
[65] Ya-Wen Su, Cen-Shawn Wu, Chih-Hua Liu, Hung-Yi Lin, and Chii-Dong Chen. Hybrid
stacking structure of electroplated copper onto graphene for future interconnect
applications. Applied Physics Letters, 107(9):093105, 2015.
65
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *