|
[1] S. Shakib, H.-C. Park, J. Dunworth, V. Aparin and K. Entesari, "A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS," IEEE J. Solid-State Circuits, vol. VOL. 51, no. NO. 12, pp. 3020-3036, Dec. 2016. [2] P.-H. Chen, H.-K. Chiou and Y.-C. Wang, "A K-band 24.1% PAE Wideband Unilateralized CMOS Power Amplifier Using Differential Transmission-Line Transformers in 0.18-μm CMOS," vol. VOL. 26, no. NO. 11, pp. 924-926, NOV. 2016. [3] S. R. Helmi, J.-H. Chen and S. Mohammadi, "High-Efficiency Microwave and mm-Wave Stacked Cell CMOS SOI Power Amplifiers," IEEE Trans. Microw. Theory Techn., vol. 64, no. 7, July 2016. [4] T.-Y. Huang, Y.-H. Lin and H. Wang, "A K-Band Adaptive-Bias Power Amplifier with Enhanced Linearizer Using 0.18-um CMOS Process," IEEE Int. Microw. Symp., pp. 1-3, May 2015. [5] H. Alsuraisry, J.-H. Cheng, S.-J. Luo, W.-J. Lin, J.-H. Tsai and T.-W. Huang, "A 24-GHz Transformer-Based Stacked-FET Power Amplifier in 90-nm CMOS Technology," Asia-Pacific Microw. Conf., vol. 3, pp. 1-3, Dec. 2015. [6] J. A. Jayamon, J. F. Buckwalter and P. M. Asbeck, "Multigate-Cell Stacked FET Design for Millimeter-Wave CMOS Power Amplifiers," IEEE J. Solid-State Circuits, vol. 51, no. 9, SEPTEMBER 2016. [7] B. Razavi, RF Microelectronics, 2 ed., Prentice Hall, 2012. [8] J. Y.-C. Liu, R. Berengure and M.-C. F. Chang, "Millimeter-Wave Self-Healing Power Amplifier With Adaptive Amplitude and Phase Linearization in 65-nm CMOS," IEEE Trans. Microw. Theory Techn., vol. 60, no. 5, May 2012. [9] I. Aoki, S. D. Kee, D. B. Rutledge and A. Hajimiri, "Distributed Active Transformer—A New Power-Combining and Impedance-Transformation Technique," IEEE Trans. Microw. Theory Techn., vol. 50, no. 1, JANUARY 2002. [10] H.-T. Dabag, H. Bassel, F. Golcuk, A. Agah, J. F. Buckwalter and P. M. Asbeck, "Analysis and Design of Stacked-FET Millimeter-Wave Power Amplifiers," IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, APRIL 2013. [11]Y. Kim and Y. Kwon, "Analysis and Design of Millimeter-Wave Power Amplifier Using Stacked-FET Structure," IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, FEBRUARY 2015. [12] U. Kim and Y. Kwon, "A High-Efficiency SOI CMOS Stacked-FET Power Amplifier Using Phase-Based Linearization," IEEE Microw. Compon. Lett., vol. 24, no. 12, DECEMBER 2014. [13] H.-F. Wu, Q.-F. Cheng, X.-G. Li and H.-P. Fu, "Analysis and Design of Ultra-broadband Stacked Power Amplifier in CMOS Technology," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016. [14] A. Agah, J. A. Jayamon, P. M. Asbeck, L. E. Larson and J. F. Buckwalter, "Multi-Drive Stacked-FET Power Amplifiers at 90 GHz in 45 nm SOI CMOS," IEEE J. Solid-State Circuits, vol. 49, no. 5, MAY 2014. [15] J.-H. Chen, S. R. Helmi and S. Mohammadi, "A fully-integrated Ka-band stacked power amplifier in 45nm CMOS SOI technology," IEEE Silicon Monolithic Integr. Circuits in RF Syst., pp. 55-77, 2013. [16] H. Koo, B. Koo and S. Hong, "Highly Efficient 24-GHz CMOS Linear Power Amplifier with Adaptive Bias Circuits," Asia-Pacific Microw. Conf., pp. 75-77, Jan. 2013. [17] J. Y.-C. Liu, C.-T. Chan and S. S.-H. Hsu, "A K-Band Power Amplifier with Adaptive Bias in 90-nm CMOS," European Microw. Integr. Circuits Conf., pp. 432-435, Oct. 2014. [18] H. Zhang and Q. Xue, "60-GHz CMOS Current-Combining PA With Adaptive Back-Off PAE Enhancement," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 9, Sep. 2016. [19] A. Agah, W. Wang, P. Asbeck, L. Larson and J. Buckwalter, "A 42 to 47-GHz, 8-bit I/Q digital-to-RF converter with 21-dBm Psat and 16% PAE in 45-nm SOI CMOS," IEEE Radio Frequency Integrated Circuits Symp., pp. 249-252, Jun. 2013. [20] K. Kim and C. Nguyen, "Design of a K-Band Power Amplifier for High Gain, Output Power and Efficiency on 0.18-um SiGe BiCMOS Process," Asia-Pacific Microw. Conf., pp. 594-596, Nov. 2014. [21] J.-W. Lee and B.-S. Kim, "A K-Band High-Voltage Four-Way Series-Bias Cascode Power Amplifier in 0.13 m CMOS," IEEE Microw. Compon. Lett., vol. 20, no. 7, July 2010. [22] P. Huang, K. Guo, Y. Yu and K. Kang, "A 21.08 dBm Q-Band Power Amplifier in 90-nm CMOS Process," IEEE Int. Wireless Symp., Mar. 2014. [23] ETSI, "Broadband Radio Access Networks (BRAN); 60 GHz Multiple-Gigabit WAS/RLAN Systems; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive," ETSI EN 302 567 v2.0.22, 2016. [24] FCC, "Use of Spectrum Bands Above 24 GHz For Mobile Radio Services, et al," FCC 16-89, 2016. [25] Y.-N. Jen, J.-H. Tsai, C.-T. Peng and T.-W. Huang, "A 20 to 24 GHz 16.8 dBm Fully Integrated Power Amplifier Using 0.18-um CMOS Process," IEEE Microw. Compon. Lett, vol. 19, no. 1, Jan. 2009. [26] K. Joshin, Y. Kawano, M. Fujita, T. Suzuki, M. Sato and T. Hirose, "A 24 GHz 90-nm CMOS-Based Power Amplifier Module with Output Power of 20 dBm," IEEE Radio-Frequency Integration Techn., pp. 217-220, Jan. 2009. [27] H. Koo, B. Koo and S. Hong, "Highly Efficient 24-GHz CMOS Linear Power Amplifier with an Adaptive Bias Circuit," IEEE Asia-Pacific Microw. Conf., pp. 7-9, Dec. 2012. [28] K. Kim and C. Nguyen, "Design of a K-Band Power Amplifier for High Gain, Output Power and Efficiency on 0.18-um SiGe BiCMOS Process," IEEE Asia-Pacific Microw. Conf, pp. 594-596, Nov. 2014. [29] S. Forst, T. Zivanovic and M. Delahoy, "ULTRA-WIDEBAND SHORT-RANGE RADARS FOR AUTOMOTIVE APPLICATIONS".
|