帳號:guest(3.141.37.40)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝秉逸
作者(外文):Hsieh, Ping-Yi
論文名稱(中文):應用閘極脈衝偏壓實現高響應及高速之單層二硫化鉬光偵測電晶體陣列
論文名稱(外文):High responsivity and fast response time monolayer MoS2 phototransistor array using gate voltage pulse
指導教授(中文):吳孟奇
楊智超
指導教授(外文):Wu, Meng-Chyi
Yang, Chih-Chao
口試委員(中文):李奕賢
劉柏村
口試委員(外文):Lee, Yi-Hsien
Liu, Po-Tsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063530
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:88
中文關鍵詞:二硫化鉬光偵測電晶體閘極脈衝偏壓單層響應度響應速度
外文關鍵詞:MoS2phototransistorgate voltage pulsemonolayerresponsivityresponse time
相關次數:
  • 推薦推薦:0
  • 點閱點閱:684
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
自從石墨烯被成功製備且驗證單原子層材料能夠穩定存在後,對各類二維材料的研究突飛猛進的發展。在這些材料之中,具有半導體特性的過渡性金屬硫屬化合物(Transition Metal Dichalcogenide, TMD)因其獨具的電學與光學性質而獲得了廣泛的注意。值得一提的是,以二硫化鉬(MoS2)製作之光感測電晶體已被驗證具有大於1安培/瓦的高光響應度,被視為下世代光電元件的關鍵材料。然而,其緩慢的響應速度限制了許多方面的應用。
在本篇論文中,我們藉由清大材料所李奕賢教授實驗室所提供之大面積、高品質二硫化鉬薄膜(以化學氣相沉積方式製備),成功製作出具高響應度之單層二硫化鉬光偵測電晶體。以通道後製(channel last, CL)及通道先製(channel first, CF)技術製作之元件皆在本文中展示。由於其較低的接觸阻抗,以通道先製技術製作之光偵測電晶體具有較好的光電特性。與文獻中在環境下操作的二硫化鉬光偵測器相比,本實驗中展示之光偵測電晶體具有就我們所知最高的光響應度(2.7×〖10〗^3安培/瓦)及相對快速的響應速度(約幾秒)。通道長度調變效應也在本文中被討論,我們觀察到上升時間(Rise time)與光激發電子電洞對受電場分離至源/汲極的傳輸時間有很高的相依性,而下降時間(Fall time)則是和缺陷的複合機制較為相關。
為了消除元件中的持續性光電導(Persistent photoconductivity, PPC)效應,我們在動態量測的上升端以及下降端施加額外的閘極脈衝偏壓,這麼做能夠將元件的反應速度降至100毫秒以下,此為本實驗機台量測速度之極限。這樣的結果可適用於論文中所有的元件。我們提出了一個簡化的能帶模型來闡述閘極脈衝偏壓的機制,指出在閘極氧化層及二維材料介面的電洞陷阱(hole trap)是造成二硫化鉬光感測電晶體響應速度緩慢的重要原因。
本篇論文的觀察指出了改善二硫化鉬光偵測電晶體特性的大方向,為未來相關實驗奠定了有效的分析工具及方法。
Since graphene has been successfully synthesized and show decent stability in two-dimensional (2D) form, the research of various 2D materials are skyrocketing. Among the big family of 2D atomic layers, transition metal dichalcogenides (TMDs) with sizable bandgap have attracted tremendous attention due to its unique electrical and optical properties. Monolayer MoS2, in particular, has been revealed to possess high photoresponsivity larger than 1 A/W in phototransistor type, promising for next generation optoelectronic devices. However, the slow response speed obscures its applications.
In this thesis, high responsivity and fast response time monolayer MoS2 phototransistor array have been successfully fabricated thanks to the high quality, large area TMD films grown by chemical vapor deposition, provided by NTHU Prof. Yi-Hsien Lee’s group. Two different processing steps, channel last (CL) and channel first (CF) fabrication, are demonstrated in our study, presenting superior properties in CF devices on account of lower contact resistance. To the best of our knowledge, our CF device holds highest responsivity (2.7×〖10〗^3 A/W) and relatively fast response speed (~few second) under ambient air compared with other MoS2 phototransistors in literature. In addition, channel length modulation effects are also examined, suggesting that rising speed is dependent with the transportation time of photogenerated e-h pairs being separated and drift to Source/Drain contact, while the falling speed is dominated by the recombination through the trap centers.
To eliminate the persistent photoconductivity (PPC) effect, we applied gate voltage pulse at both rising and falling edge, further reducing the response speed to less than 100ms, limited by the temporal resolution of our measurement. The result shows good consistency in all of our devices. A simplified band bending model has been proposed to explain the gate voltage pulse mechanisms, indicating the photogating effect of hole traps at oxide/MoS2 interface are responsible to the slow response speed.
Our findings provide a general guideline to improve the performance of MoS2 phototransistor array.
摘要 I
Abstract III
Acknowledgement V
Contents VII
Table Lists X
Figure Caption XI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Synthesis of Monolayer TMDs 4
1.2.1 Top-down exfoliation 4
1.2.2 Bottom-up synthesis 5
1.3 Application of TMDs 8
1.4 Motivation 9
Chapter 2 Mechanisms Description 11
2.1 MoS2 transistors 11
2.1.1 operation principles 11
2.1.2 Ultra-thin body (UTB) nature 12
2.1.3 Electrical contacts 14
2.1.4 Hysteresis 15
2.2 Photocurrent generation mechanisms 17
2.2.1 Photoconductive (PC) effect 18
2.2.2 Photovoltaic (PV) effect 19
2.2.3 Photogating effect 20
2.2.4 Photo-thermoelectric (PTE) effect 21
2.2.5 Photo-bolometric (PB) effect 22
Chapter 3 Experimental Apparatus and Device Fabrication 23
3.1 Manufacturing and measurement Instrument description 23
3.1.1 Wet bench 23
3.1.2 Vertical Furnace 25
3.1.3 Plasma Enhanced Atomic Layer Deposition (PE-ALD) 26
3.1.4 Chemical Vapor Deposition of MoS2 monolayer 27
3.1.5 Electron-Beam Lithography 28
3.1.6 Dry etching machine Lam2300 30
3.1.7 Annealing system 31
3.1.8 Electron-Beam Evaporator 32
3.1.9 Sputtering Deposition 33
3.1.10 Measurement system 34
3.2 Material analysis 35
3.2.1 Raman spectroscopy 35
3.2.2 Photoluminescence (PL) spectroscopy 36
3.2.3 In-line Scanning Electron Microscope 37
3.3 Fabrication of monolayer MoS2 phototransistors 38
3.3.1 Channel last device fabrication 39
3.3.2 Channel first device fabrication 41
Chapter 4 Result and Discussion 43
4.1 Monolayer MoS2 grown by CVD process 43
4.2 Annealing after transfer process 44
4.3 Channel last (CL) and channel first (CF) device comparison 45
4.3.1 Transfer and output characteristics 46
4.3.2 Responsivity and response time 53
4.3.3 Contact resistance and Schottky barrier height (SBH) 60
4.3.4 Summary 66
4.4 Gate voltage pulses accelerated response speed 68
4.4.1 Gate voltage pulse at falling edge 68
4.4.2 Gate voltage pulse at rising edge 69
4.4.3 Mechanism description 71
Chapter 5 Conclusion and Future Prospect 75
5.1 Conclusion 75
5.2 Future prospect 76
Reference 78
Publications 88
[1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.
[2] Schwierz, F. (2010). Graphene transistors. Nature nanotechnology, 5(7), 487-496.
[3] Mueller, Thomas, Fengnian Xia, and Phaedon Avouris. "Graphene photodetectors for high-speed optical communications." Nature Photonics 4.5 (2010): 297-301.
[4] Geim, A. K., & Grigorieva, I. V. (2013). Van der Waals heterostructures. Nature, 499(7459), 419-425.
[5] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 7(11), 699-712.
[6] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., ... & Wang, F. (2010). Emerging photoluminescence in monolayer MoS2. Nano letters, 10(4), 1271-1275.
[7] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, I. V., & Kis, A. (2011). Single-layer MoS2 transistors. Nature nanotechnology, 6(3), 147-150.
[8] Zeng, H., Dai, J., Yao, W., Xiao, D., & Cui, X. (2012). Valley polarization in MoS2 monolayers by optical pumping. Nature nanotechnology, 7(8), 490-493.
[9] Novoselov, K. S., & Neto, A. C. (2012). Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta, 2012(T146), 014006.
[10] Jung, Y., Zhou, Y., & Cha, J. J. (2016). Intercalation in two-dimensional transition metal chalcogenides. Inorganic Chemistry Frontiers, 3(4), 452-463.
[11] Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S., & Coleman, J. N. (2013). Liquid exfoliation of layered materials. Science, 340(6139), 1226419.
[12] Castellanos-Gomez, A., Barkelid, M., Goossens, A. M., Calado, V. E., van der Zant, H. S., & Steele, G. A. (2012). Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano letters, 12(6), 3187-3192.
[13] Liu, K. K., Zhang, W., Lee, Y. H., Lin, Y. C., Chang, M. T., Su, C. Y., ... & Lai, C. S. (2012). Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano letters, 12(3), 1538-1544.
[14] Lin, Y. C., Zhang, W., Huang, J. K., Liu, K. K., Lee, Y. H., Liang, C. T., ... & Li, L. J. (2012). Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 4(20), 6637-6641.
[15] Lee, Y. H., Zhang, X. Q., Zhang, W., Chang, M. T., Lin, C. T., Chang, K. D., ... & Lin, T. W. (2012). Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 24(17), 2320-2325.
[16] Kang, K., Xie, S., Huang, L., Han, Y., Huang, P. Y., Mak, K. F., ... & Park, J. (2015). High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 520(7549), 656-660.
[17] Ling, X., Lee, Y. H., Lin, Y., Fang, W., Yu, L., Dresselhaus, M. S., & Kong, J. (2014). Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano letters, 14(2), 464-472.
[18] Fang, H., Chuang, S., Chang, T. C., Takei, K., Takahashi, T., & Javey, A. (2012). High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano letters, 12(7), 3788-3792.
[19] Wang, H., Yu, L., Lee, Y. H., Shi, Y., Hsu, A., Chin, M. L., ... & Palacios, T. (2012). Integrated circuits based on bilayer MoS2 transistors. Nano letters, 12(9), 4674-4680.
[20] Li, K. S., Wu, B. W., Li, L. J., Li, M. Y., Cheng, C. C. K., Hsu, C. L., ... & Chen, M. C. (2016, June). MoS 2 U-shape MOSFET with 10 nm channel length and Poly-Si source/drain serving as seed for full wafer CVD MoS 2 availability. In VLSI Technology, 2016 IEEE Symposium on (pp. 1-2). IEEE.
[21] Chuang, S., Battaglia, C., Azcatl, A., McDonnell, S., Kang, J. S., Yin, X., ... & Javey, A. (2014). MoS2 p-type transistors and diodes enabled by high work function MoO x contacts. Nano letters, 14(3), 1337-1342.
[22] Desai, S. B., Madhvapathy, S. R., Sachid, A. B., Llinas, J. P., Wang, Q., Ahn, G. H., ... & Wong, H. S. P. (2016). MoS2 transistors with 1-nanometer gate lengths. Science, 354(6308), 99-102.
[23] Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., & Kis, A. (2013). Ultrasensitive photodetectors based on monolayer MoS2. Nature nanotechnology, 8(7), 497-501.
[24] Zhang, W., Huang, J. K., Chen, C. H., Chang, Y. H., Cheng, Y. J., & Li, L. J. (2013). High‐Gain Phototransistors Based on a CVD MoS2 Monolayer. Advanced Materials, 25(25), 3456-3461.
[25] Kufer, D., Nikitskiy, I., Lasanta, T., Navickaite, G., Koppens, F. H., & Konstantatos, G. (2015). Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Advanced Materials, 27(1), 176-180.
[26] Zhang, W., Chuu, C. P., Huang, J. K., Chen, C. H., Tsai, M. L., Chang, Y. H., ... & Chou, M. Y. (2014). Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Scientific reports, 4, 3826.
[27] Perkins, F. K., Friedman, A. L., Cobas, E., Campbell, P. M., Jernigan, G. G., & Jonker, B. T. (2013). Chemical vapor sensing with monolayer MoS2. Nano letters, 13(2), 668-673.
[28] Sarkar, D., Liu, W., Xie, X., Anselmo, A. C., Mitragotri, S., & Banerjee, K. (2014). MoS2 field-effect transistor for next-generation label-free biosensors. ACS nano, 8(4), 3992-4003.
[29] Zhang, E., Wang, W., Zhang, C., Jin, Y., Zhu, G., Sun, Q., ... & Xiu, F. (2014). Tunable charge-trap memory based on few-layer MoS2. ACS nano, 9(1), 612-619.
[30] Perea-López, N., Lin, Z., Pradhan, N. R., Iñiguez-Rábago, A., Elías, A. L., McCreary, A., ... & Terrones, M. (2014). CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Materials, 1(1), 011004.
[31] Zhang, W., Chiu, M. H., Chen, C. H., Chen, W., Li, L. J., & Wee, A. T. S. (2014). Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS nano, 8(8), 8653-8661.
[32] Xia, J., Huang, X., Liu, L. Z., Wang, M., Wang, L., Huang, B., ... & Meng, X. M. (2014). CVD synthesis of large-area, highly crystalline MoSe 2 atomic layers on diverse substrates and application to photodetectors. Nanoscale, 6(15), 8949-8955.
[33] Chang, Y. H., Zhang, W., Zhu, Y., Han, Y., Pu, J., Chang, J. K., ... & Takenobu, T. ACS Nano 2014, 8, 8582–8590.
[34] Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., ... & Zhang, H. (2011). Single-layer MoS2 phototransistors. ACS nano, 6(1), 74-80.
[35] Groenendijk, D. J., Buscema, M., Steele, G. A., Michaelis de Vasconcellos, S., Bratschitsch, R., van der Zant, H. S., & Castellanos-Gomez, A. (2014). Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano letters, 14(10), 5846-5852.
[36] Tsai, D. S., Liu, K. K., Lien, D. H., Tsai, M. L., Kang, C. F., Lin, C. A., ... & He, J. H. (2013). Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. Acs Nano, 7(5), 3905-3911.
[37] Perea‐López, N., Elías, A. L., Berkdemir, A., Castro‐Beltran, A., Gutiérrez, H. R., Feng, S., ... & Muchharla, B. (2013). Photosensor Device Based on Few‐Layered WS2 Films. Advanced Functional Materials, 23(44), 5511-5517.
[38] Furchi, M. M., Polyushkin, D. K., Pospischil, A., & Mueller, T. (2014). Mechanisms of photoconductivity in atomically thin MoS2. Nano letters, 14(11), 6165-6170.
[39] Choi, W., Cho, M. Y., Konar, A., Lee, J. H., Cha, G. B., Hong, S. C., ... & Kim, S. (2012). High‐detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Advanced Materials, 24(43), 5832-5836.
[40] Abderrahmane, A., Ko, P. J., Thu, T. V., Ishizawa, S., Takamura, T., & Sandhu, A. (2014). High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors. Nanotechnology, 25(36), 365202.
[41] Huo, N., Yang, S., Wei, Z., Li, S. S., Xia, J. B., & Li, J. (2014). Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Scientific reports, 4, 5209.
[42] Kufer, D., & Konstantatos, G. (2015). Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano letters, 15(11), 7307-7313.
[43] Tsai, D. S., Lien, D. H., Tsai, M. L., Su, S. H., Chen, K. M., Ke, J. J., ... & He, J. H. (2014). Trilayered MoS2 Metal–Semiconductor–Metal Photodetectors: Photogain and Radiation Resistance. IEEE Journal of Selected Topics in Quantum Electronics, 20(1), 30-35.
[44] Lee, Y., Yang, J., Lee, D., Kim, Y. H., Park, J. H., Kim, H., & Cho, J. H. (2016). Trap-induced photoresponse of solution-synthesized MoS2. Nanoscale, 8(17), 9193-9200.
[45] Liu, F., Shimotani, H., Shang, H., Kanagasekaran, T., Zolyomi, V., Drummond, N., ... & Tanigaki, K. (2014). High-sensitivity photodetectors based on multilayer GaTe flakes. ACS nano, 8(1), 752-760.
[46] Jacobs-Gedrim, R. B., Shanmugam, M., Jain, N., Durcan, C. A., Murphy, M. T., Murray, T. M., ... & Yu, B. (2013). Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS nano, 8(1), 514-521.
[47] Tamalampudi, S. R., Lu, Y. Y., Kumar U, R., Sankar, R., Liao, C. D., Moorthy B, K., ... & Chen, Y. T. (2014). High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano letters, 14(5), 2800-2806.
[48] Hu, P., Wen, Z., Wang, L., Tan, P., & Xiao, K. (2012). Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS nano, 6(7), 5988-5994.
[49] Hu, P., Wang, L., Yoon, M., Zhang, J., Feng, W., Wang, X., ... & Xiao, K. (2013). Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano letters, 13(4), 1649-1654.
[50] Lei, S., Ge, L., Najmaei, S., George, A., Kappera, R., Lou, J., ... & Mohite, A. D. (2014). Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS nano, 8(2), 1263-1272.
[51] Su, G., Hadjiev, V. G., Loya, P. E., Zhang, J., Lei, S., Maharjan, S., ... & Peng, H. (2014). Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano letters, 15(1), 506-513.
[52] Buscema, M., Groenendijk, D. J., Blanter, S. I., Steele, G. A., van der Zant, H. S., & Castellanos-Gomez, A. (2014). Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano letters, 14(6), 3347-3352.
[53] Youngblood, N., Chen, C., Koester, S. J., & Li, M. (2015). Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics.
[54] Wang, W., Klots, A., Prasai, D., Yang, Y., Bolotin, K. I., & Valentine, J. (2015). Hot electron-based near-infrared photodetection using bilayer MoS2. Nano letters, 15(11), 7440-7444.
[55] Yoon, Y., Ganapathi, K., & Salahuddin, S. (2011). How good can monolayer MoS2 transistors be?. Nano letters, 11(9), 3768-3773.
[56] Zhu, W., Low, T., Lee, Y. H., Wang, H., Farmer, D. B., Kong, J., ... & Avouris, P. (2014). Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nature communications, 5.
[57] Allain, A., Kang, J., Banerjee, K., & Kis, A. (2015). Electrical contacts to two-dimensional semiconductors. Nature Materials, 14(12), 1195-1205.
[58] Kang, J., Sarkar, D., Liu, W., Jena, D., & Banerjee, K. (2012, December). A computational study of metal-contacts to beyond-graphene 2D semiconductor materials. In Electron Devices Meeting (IEDM), 2012 IEEE International (pp. 17-4). IEEE.
[59] Kang, J., Liu, W., & Banerjee, K. (2014). High-performance MoS2 transistors with low-resistance molybdenum contacts. Applied Physics Letters, 104(9), 093106.
[60] Late, D. J., Liu, B., Matte, H. R., Dravid, V. P., & Rao, C. N. R. (2012). Hysteresis in single-layer MoS2 field effect transistors. ACS nano, 6(6), 5635-5641.
[61] Guo, Y., Wei, X., Shu, J., Liu, B., Yin, J., Guan, C., ... & Chen, Q. (2015). Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Applied Physics Letters, 106(10), 103109.
[62] Shu, J., Wu, G., Guo, Y., Liu, B., Wei, X., & Chen, Q. (2016). The intrinsic origin of hysteresis in MoS 2 field effect transistors. Nanoscale, 8(5), 3049-3056.
[63] Buscema, M., Island, J. O., Groenendijk, D. J., Blanter, S. I., Steele, G. A., van der Zant, H. S., & Castellanos-Gomez, A. (2015). Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews, 44(11), 3691-3718.
[64] Koppens, F. H. L., Mueller, T., Avouris, P., Ferrari, A. C., Vitiello, M. S., & Polini, M. (2014). Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature nanotechnology, 9(10), 780-793.
[65] Ashcroft, N. W., & Mermin, N. D. (2010). Solid State Physics (Saunders College, Philadelphia, 1976). Google Scholar.
[66] Kern, W. (1970). Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA review, 31, 187-206.
[67] Kim, H., & Oh, I. K. (2014). Review of plasma-enhanced atomic layer deposition: Technical enabler of nanoscale device fabrication. Japanese Journal of Applied Physics, 53(3S2), 03DA01.
[68] Liu, D., Guo, Y., Fang, L., & Robertson, J. (2013). Sulfur vacancies in monolayer MoS2 and its electrical contacts. Applied Physics Letters, 103(18), 183113.
[69] Li, H., Zhang, Q., Yap, C. C. R., Tay, B. K., Edwin, T. H. T., Olivier, A., & Baillargeat, D. (2012). From bulk to monolayer MoS2: evolution of Raman scattering. Advanced Functional Materials, 22(7), 1385-1390.
[70] Yang, C. C., Chiu, K. C., Chou, C. T., Liao, C. N., Chuang, M. H., Hsieh, T. Y., ... & Chen, Y. H. (2016, June). Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D+ IC. In VLSI Technology, 2016 IEEE Symposium on (pp. 1-2). IEEE.
[71] Kappera, R., Voiry, D., Yalcin, S. E., Branch, B., Gupta, G., Mohite, A. D., & Chhowalla, M. (2014). Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature materials, 13(12), 1128-1134.
[72] Liu, W., Kang, J., Cao, W., Sarkar, D., Khatami, Y., Jena, D., & Banerjee, K. (2013, December). High-performance few-layer-MoS 2 field-effect-transistor with record low contact-resistance. In Electron Devices Meeting (IEDM), 2013 IEEE International (pp. 19-4). IEEE.
[73] Yang, Q., Guo, X., Wang, W., Zhang, Y., Xu, S., Lien, D. H., & Wang, Z. L. (2010). Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. Acs Nano, 4(10), 6285-6291.
[74] Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010). Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 105(13), 136805.
[75] Hu, G. J., Chang, C., & Chia, Y. T. (1987). Gate-voltage-dependent effective channel length and series resistance of LDD MOSFET's. IEEE Transactions on Electron Devices, 34(12), 2469-2475.
[76] Chang, H. Y., Zhu, W., & Akinwande, D. (2014). On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Applied Physics Letters, 104(11), 113504.
[77] Jeon, S., Ahn, S. E., Song, I., Kim, C. J., Chung, U. I., Lee, E., ... & Robertson, J. (2012). Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nature materials, 11(4), 301-305.
[78] Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., De Arquer, F. P. G., ... & Koppens, F. H. (2012). Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature nanotechnology, 7(6), 363-368.
[79] Qiu, H., Xu, T., Wang, Z., Ren, W., Nan, H., Ni, Z., ... & Long, G. (2013). Hopping transport through defect-induced localized states in molybdenum disulfide. arXiv preprint arXiv:1309.3711.
[80] Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., ... & Idrobo, J. C. (2013). Intrinsic structural defects in monolayer molybdenum disulfide. Nano letters, 13(6), 2615-2622.
[81] Ghatak, S., Pal, A. N., & Ghosh, A. (2011). Nature of electronic states in atomically thin MoS2 field-effect transistors. Acs Nano, 5(10), 7707-7712.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *