|
[1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669. [2] Schwierz, F. (2010). Graphene transistors. Nature nanotechnology, 5(7), 487-496. [3] Mueller, Thomas, Fengnian Xia, and Phaedon Avouris. "Graphene photodetectors for high-speed optical communications." Nature Photonics 4.5 (2010): 297-301. [4] Geim, A. K., & Grigorieva, I. V. (2013). Van der Waals heterostructures. Nature, 499(7459), 419-425. [5] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 7(11), 699-712. [6] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., ... & Wang, F. (2010). Emerging photoluminescence in monolayer MoS2. Nano letters, 10(4), 1271-1275. [7] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, I. V., & Kis, A. (2011). Single-layer MoS2 transistors. Nature nanotechnology, 6(3), 147-150. [8] Zeng, H., Dai, J., Yao, W., Xiao, D., & Cui, X. (2012). Valley polarization in MoS2 monolayers by optical pumping. Nature nanotechnology, 7(8), 490-493. [9] Novoselov, K. S., & Neto, A. C. (2012). Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta, 2012(T146), 014006. [10] Jung, Y., Zhou, Y., & Cha, J. J. (2016). Intercalation in two-dimensional transition metal chalcogenides. Inorganic Chemistry Frontiers, 3(4), 452-463. [11] Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S., & Coleman, J. N. (2013). Liquid exfoliation of layered materials. Science, 340(6139), 1226419. [12] Castellanos-Gomez, A., Barkelid, M., Goossens, A. M., Calado, V. E., van der Zant, H. S., & Steele, G. A. (2012). Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano letters, 12(6), 3187-3192. [13] Liu, K. K., Zhang, W., Lee, Y. H., Lin, Y. C., Chang, M. T., Su, C. Y., ... & Lai, C. S. (2012). Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano letters, 12(3), 1538-1544. [14] Lin, Y. C., Zhang, W., Huang, J. K., Liu, K. K., Lee, Y. H., Liang, C. T., ... & Li, L. J. (2012). Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 4(20), 6637-6641. [15] Lee, Y. H., Zhang, X. Q., Zhang, W., Chang, M. T., Lin, C. T., Chang, K. D., ... & Lin, T. W. (2012). Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 24(17), 2320-2325. [16] Kang, K., Xie, S., Huang, L., Han, Y., Huang, P. Y., Mak, K. F., ... & Park, J. (2015). High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 520(7549), 656-660. [17] Ling, X., Lee, Y. H., Lin, Y., Fang, W., Yu, L., Dresselhaus, M. S., & Kong, J. (2014). Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano letters, 14(2), 464-472. [18] Fang, H., Chuang, S., Chang, T. C., Takei, K., Takahashi, T., & Javey, A. (2012). High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano letters, 12(7), 3788-3792. [19] Wang, H., Yu, L., Lee, Y. H., Shi, Y., Hsu, A., Chin, M. L., ... & Palacios, T. (2012). Integrated circuits based on bilayer MoS2 transistors. Nano letters, 12(9), 4674-4680. [20] Li, K. S., Wu, B. W., Li, L. J., Li, M. Y., Cheng, C. C. K., Hsu, C. L., ... & Chen, M. C. (2016, June). MoS 2 U-shape MOSFET with 10 nm channel length and Poly-Si source/drain serving as seed for full wafer CVD MoS 2 availability. In VLSI Technology, 2016 IEEE Symposium on (pp. 1-2). IEEE. [21] Chuang, S., Battaglia, C., Azcatl, A., McDonnell, S., Kang, J. S., Yin, X., ... & Javey, A. (2014). MoS2 p-type transistors and diodes enabled by high work function MoO x contacts. Nano letters, 14(3), 1337-1342. [22] Desai, S. B., Madhvapathy, S. R., Sachid, A. B., Llinas, J. P., Wang, Q., Ahn, G. H., ... & Wong, H. S. P. (2016). MoS2 transistors with 1-nanometer gate lengths. Science, 354(6308), 99-102. [23] Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., & Kis, A. (2013). Ultrasensitive photodetectors based on monolayer MoS2. Nature nanotechnology, 8(7), 497-501. [24] Zhang, W., Huang, J. K., Chen, C. H., Chang, Y. H., Cheng, Y. J., & Li, L. J. (2013). High‐Gain Phototransistors Based on a CVD MoS2 Monolayer. Advanced Materials, 25(25), 3456-3461. [25] Kufer, D., Nikitskiy, I., Lasanta, T., Navickaite, G., Koppens, F. H., & Konstantatos, G. (2015). Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Advanced Materials, 27(1), 176-180. [26] Zhang, W., Chuu, C. P., Huang, J. K., Chen, C. H., Tsai, M. L., Chang, Y. H., ... & Chou, M. Y. (2014). Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Scientific reports, 4, 3826. [27] Perkins, F. K., Friedman, A. L., Cobas, E., Campbell, P. M., Jernigan, G. G., & Jonker, B. T. (2013). Chemical vapor sensing with monolayer MoS2. Nano letters, 13(2), 668-673. [28] Sarkar, D., Liu, W., Xie, X., Anselmo, A. C., Mitragotri, S., & Banerjee, K. (2014). MoS2 field-effect transistor for next-generation label-free biosensors. ACS nano, 8(4), 3992-4003. [29] Zhang, E., Wang, W., Zhang, C., Jin, Y., Zhu, G., Sun, Q., ... & Xiu, F. (2014). Tunable charge-trap memory based on few-layer MoS2. ACS nano, 9(1), 612-619. [30] Perea-López, N., Lin, Z., Pradhan, N. R., Iñiguez-Rábago, A., Elías, A. L., McCreary, A., ... & Terrones, M. (2014). CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Materials, 1(1), 011004. [31] Zhang, W., Chiu, M. H., Chen, C. H., Chen, W., Li, L. J., & Wee, A. T. S. (2014). Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS nano, 8(8), 8653-8661. [32] Xia, J., Huang, X., Liu, L. Z., Wang, M., Wang, L., Huang, B., ... & Meng, X. M. (2014). CVD synthesis of large-area, highly crystalline MoSe 2 atomic layers on diverse substrates and application to photodetectors. Nanoscale, 6(15), 8949-8955. [33] Chang, Y. H., Zhang, W., Zhu, Y., Han, Y., Pu, J., Chang, J. K., ... & Takenobu, T. ACS Nano 2014, 8, 8582–8590. [34] Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., ... & Zhang, H. (2011). Single-layer MoS2 phototransistors. ACS nano, 6(1), 74-80. [35] Groenendijk, D. J., Buscema, M., Steele, G. A., Michaelis de Vasconcellos, S., Bratschitsch, R., van der Zant, H. S., & Castellanos-Gomez, A. (2014). Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano letters, 14(10), 5846-5852. [36] Tsai, D. S., Liu, K. K., Lien, D. H., Tsai, M. L., Kang, C. F., Lin, C. A., ... & He, J. H. (2013). Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. Acs Nano, 7(5), 3905-3911. [37] Perea‐López, N., Elías, A. L., Berkdemir, A., Castro‐Beltran, A., Gutiérrez, H. R., Feng, S., ... & Muchharla, B. (2013). Photosensor Device Based on Few‐Layered WS2 Films. Advanced Functional Materials, 23(44), 5511-5517. [38] Furchi, M. M., Polyushkin, D. K., Pospischil, A., & Mueller, T. (2014). Mechanisms of photoconductivity in atomically thin MoS2. Nano letters, 14(11), 6165-6170. [39] Choi, W., Cho, M. Y., Konar, A., Lee, J. H., Cha, G. B., Hong, S. C., ... & Kim, S. (2012). High‐detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Advanced Materials, 24(43), 5832-5836. [40] Abderrahmane, A., Ko, P. J., Thu, T. V., Ishizawa, S., Takamura, T., & Sandhu, A. (2014). High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors. Nanotechnology, 25(36), 365202. [41] Huo, N., Yang, S., Wei, Z., Li, S. S., Xia, J. B., & Li, J. (2014). Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Scientific reports, 4, 5209. [42] Kufer, D., & Konstantatos, G. (2015). Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano letters, 15(11), 7307-7313. [43] Tsai, D. S., Lien, D. H., Tsai, M. L., Su, S. H., Chen, K. M., Ke, J. J., ... & He, J. H. (2014). Trilayered MoS2 Metal–Semiconductor–Metal Photodetectors: Photogain and Radiation Resistance. IEEE Journal of Selected Topics in Quantum Electronics, 20(1), 30-35. [44] Lee, Y., Yang, J., Lee, D., Kim, Y. H., Park, J. H., Kim, H., & Cho, J. H. (2016). Trap-induced photoresponse of solution-synthesized MoS2. Nanoscale, 8(17), 9193-9200. [45] Liu, F., Shimotani, H., Shang, H., Kanagasekaran, T., Zolyomi, V., Drummond, N., ... & Tanigaki, K. (2014). High-sensitivity photodetectors based on multilayer GaTe flakes. ACS nano, 8(1), 752-760. [46] Jacobs-Gedrim, R. B., Shanmugam, M., Jain, N., Durcan, C. A., Murphy, M. T., Murray, T. M., ... & Yu, B. (2013). Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS nano, 8(1), 514-521. [47] Tamalampudi, S. R., Lu, Y. Y., Kumar U, R., Sankar, R., Liao, C. D., Moorthy B, K., ... & Chen, Y. T. (2014). High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano letters, 14(5), 2800-2806. [48] Hu, P., Wen, Z., Wang, L., Tan, P., & Xiao, K. (2012). Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS nano, 6(7), 5988-5994. [49] Hu, P., Wang, L., Yoon, M., Zhang, J., Feng, W., Wang, X., ... & Xiao, K. (2013). Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano letters, 13(4), 1649-1654. [50] Lei, S., Ge, L., Najmaei, S., George, A., Kappera, R., Lou, J., ... & Mohite, A. D. (2014). Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS nano, 8(2), 1263-1272. [51] Su, G., Hadjiev, V. G., Loya, P. E., Zhang, J., Lei, S., Maharjan, S., ... & Peng, H. (2014). Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano letters, 15(1), 506-513. [52] Buscema, M., Groenendijk, D. J., Blanter, S. I., Steele, G. A., van der Zant, H. S., & Castellanos-Gomez, A. (2014). Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano letters, 14(6), 3347-3352. [53] Youngblood, N., Chen, C., Koester, S. J., & Li, M. (2015). Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics. [54] Wang, W., Klots, A., Prasai, D., Yang, Y., Bolotin, K. I., & Valentine, J. (2015). Hot electron-based near-infrared photodetection using bilayer MoS2. Nano letters, 15(11), 7440-7444. [55] Yoon, Y., Ganapathi, K., & Salahuddin, S. (2011). How good can monolayer MoS2 transistors be?. Nano letters, 11(9), 3768-3773. [56] Zhu, W., Low, T., Lee, Y. H., Wang, H., Farmer, D. B., Kong, J., ... & Avouris, P. (2014). Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nature communications, 5. [57] Allain, A., Kang, J., Banerjee, K., & Kis, A. (2015). Electrical contacts to two-dimensional semiconductors. Nature Materials, 14(12), 1195-1205. [58] Kang, J., Sarkar, D., Liu, W., Jena, D., & Banerjee, K. (2012, December). A computational study of metal-contacts to beyond-graphene 2D semiconductor materials. In Electron Devices Meeting (IEDM), 2012 IEEE International (pp. 17-4). IEEE. [59] Kang, J., Liu, W., & Banerjee, K. (2014). High-performance MoS2 transistors with low-resistance molybdenum contacts. Applied Physics Letters, 104(9), 093106. [60] Late, D. J., Liu, B., Matte, H. R., Dravid, V. P., & Rao, C. N. R. (2012). Hysteresis in single-layer MoS2 field effect transistors. ACS nano, 6(6), 5635-5641. [61] Guo, Y., Wei, X., Shu, J., Liu, B., Yin, J., Guan, C., ... & Chen, Q. (2015). Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Applied Physics Letters, 106(10), 103109. [62] Shu, J., Wu, G., Guo, Y., Liu, B., Wei, X., & Chen, Q. (2016). The intrinsic origin of hysteresis in MoS 2 field effect transistors. Nanoscale, 8(5), 3049-3056. [63] Buscema, M., Island, J. O., Groenendijk, D. J., Blanter, S. I., Steele, G. A., van der Zant, H. S., & Castellanos-Gomez, A. (2015). Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews, 44(11), 3691-3718. [64] Koppens, F. H. L., Mueller, T., Avouris, P., Ferrari, A. C., Vitiello, M. S., & Polini, M. (2014). Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature nanotechnology, 9(10), 780-793. [65] Ashcroft, N. W., & Mermin, N. D. (2010). Solid State Physics (Saunders College, Philadelphia, 1976). Google Scholar. [66] Kern, W. (1970). Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA review, 31, 187-206. [67] Kim, H., & Oh, I. K. (2014). Review of plasma-enhanced atomic layer deposition: Technical enabler of nanoscale device fabrication. Japanese Journal of Applied Physics, 53(3S2), 03DA01. [68] Liu, D., Guo, Y., Fang, L., & Robertson, J. (2013). Sulfur vacancies in monolayer MoS2 and its electrical contacts. Applied Physics Letters, 103(18), 183113. [69] Li, H., Zhang, Q., Yap, C. C. R., Tay, B. K., Edwin, T. H. T., Olivier, A., & Baillargeat, D. (2012). From bulk to monolayer MoS2: evolution of Raman scattering. Advanced Functional Materials, 22(7), 1385-1390. [70] Yang, C. C., Chiu, K. C., Chou, C. T., Liao, C. N., Chuang, M. H., Hsieh, T. Y., ... & Chen, Y. H. (2016, June). Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D+ IC. In VLSI Technology, 2016 IEEE Symposium on (pp. 1-2). IEEE. [71] Kappera, R., Voiry, D., Yalcin, S. E., Branch, B., Gupta, G., Mohite, A. D., & Chhowalla, M. (2014). Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature materials, 13(12), 1128-1134. [72] Liu, W., Kang, J., Cao, W., Sarkar, D., Khatami, Y., Jena, D., & Banerjee, K. (2013, December). High-performance few-layer-MoS 2 field-effect-transistor with record low contact-resistance. In Electron Devices Meeting (IEDM), 2013 IEEE International (pp. 19-4). IEEE. [73] Yang, Q., Guo, X., Wang, W., Zhang, Y., Xu, S., Lien, D. H., & Wang, Z. L. (2010). Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. Acs Nano, 4(10), 6285-6291. [74] Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010). Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 105(13), 136805. [75] Hu, G. J., Chang, C., & Chia, Y. T. (1987). Gate-voltage-dependent effective channel length and series resistance of LDD MOSFET's. IEEE Transactions on Electron Devices, 34(12), 2469-2475. [76] Chang, H. Y., Zhu, W., & Akinwande, D. (2014). On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Applied Physics Letters, 104(11), 113504. [77] Jeon, S., Ahn, S. E., Song, I., Kim, C. J., Chung, U. I., Lee, E., ... & Robertson, J. (2012). Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nature materials, 11(4), 301-305. [78] Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., De Arquer, F. P. G., ... & Koppens, F. H. (2012). Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature nanotechnology, 7(6), 363-368. [79] Qiu, H., Xu, T., Wang, Z., Ren, W., Nan, H., Ni, Z., ... & Long, G. (2013). Hopping transport through defect-induced localized states in molybdenum disulfide. arXiv preprint arXiv:1309.3711. [80] Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., ... & Idrobo, J. C. (2013). Intrinsic structural defects in monolayer molybdenum disulfide. Nano letters, 13(6), 2615-2622. [81] Ghatak, S., Pal, A. N., & Ghosh, A. (2011). Nature of electronic states in atomically thin MoS2 field-effect transistors. Acs Nano, 5(10), 7707-7712.
|