帳號:guest(3.137.172.115)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳意筑
作者(外文):Wu, Yi-Chu
論文名稱(中文):有機半導體胺類氣體感測器結構改善及應用開發
論文名稱(外文):Improve the structure about organic semiconductor amine-based gas sensor and application development
指導教授(中文):洪勝富
指導教授(外文):Horng, Sheng-Fu
口試委員(中文):冉曉雯
孟心飛
口試委員(外文):Zan, Hsiao-Wen
Meng, Hsin-Fei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063519
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:66
中文關鍵詞:有機半導體氣體感測器
外文關鍵詞:organic semiconductorgas sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:80
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
  本論文改善了原先的感測器結構,此結構具有簡易製成、成本低廉且能在較低的驅動電壓下得到較高的電流值,使其更能匹配至較低規格的量測系統。主要以兩種材料作為感測材料,第一種材料可在5V驅動電壓下可達到數個µA之電流,100ppb的氨氣可達到1.9%的響應值,且在一般空氣下保存,壽命可達40天;第二種材料則在2V驅動電壓下亦可達到數個µA之電流,100ppb的氨氣可達到1.8%的響應值,在一般空氣下保存壽命可長達70天。
  本論文亦改良量測魚肉新鮮度的感測系統,使系統更為簡便,且可明確鑑別出新鮮與在35℃放置12小時的魚肉;利用此簡易系統針對不同樣品做感測,發現本論文中使用的元件對氨氣以外的物質可能亦具有感測能力,且使用不同材料之晶片可得到相似的結果,故未來可針對選擇性做更深入的測試。
The aim of this thesis is we improved the structure about the organic semiconductor gas sensor. This structure is simple, low cost and can be in the lower applied voltage to get a higher current value. So that it can match to the lower specification of the measurement system. We use two material as sensing layer. One of them can reach several microampere on five volt. The maximum response for 100ppb ammonia gas is 1.8%, and the lifetime is 40 days. The other has several microampere on two volt. The maximum response for 100ppb ammonia gas is 1.9%, and the lifetime is 70 days.
We also improve the system about the freshness of fish. We can distinguish the freshness about the fish stored in 35℃ 12 hours with the fresh fish. We can use this simple system to sense different samples. We can sense other substance which is not ammonia, and get the similar results by using different sensor. We can do more analysis in future.
中文摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 vii
表目錄 ix
Chapter1 緒論 1
1-1 研究動機 1
1-2 先期成果 3
Chapter2 有機材料介紹與元件操作原理 5
2-1 有機材料簡介 5
2-1.1 共軛高分子材料 5
2-1.2 材料特性 7
2-2 有機二極體的操作原理 11
2-3 金屬與半導體接面原理 12
2-4 載子傳輸理論與空間電荷限制理論 16
2-4.1 塊材限制 16
2-4.2 接面限制 17
2-5 熱離子發射理論與穿隧效應 18
Chapter3 氣體感測元件製程及量測 20
3-1 標準有機氣體感測元件製程 20
3-1.1 基板之圖樣定義製程 20
3-1.2 標準側壁(sidewall)結構製程 22
3-1.3 標準單層平面膜結構製程 27
3-1.4 標準奈米線結構製程 29
3-2 量測系統架設介紹 32
3-3 氣體感測機制 35
Chapter4 平面雙層結構元件 37
4-1 平面雙層結構元件製程 37
4-2 元件感測結果 40
4-2.1 TFB以銀奈米線作上電極之結構感測結果 40
4-2.2 TFB雙層結構感測結果 42
4-2.3 PTB7側壁結構感測結果 44
4-2.4 PTB7單層無介面處理層 46
4-2.5 PTB7雙層結構感測結果 47
4-2.6 平面膜結構移除除濕管 50
Chapter5 感測器應用 52
5-1 魚肉無氣袋感測結果 52
5-2 雞蛋感測結果 56
5-3 手部氣味量測結果 58
Chapter6 結論與未來展望 61
6-1 結論 61
6-2 未來展望 63
參考文獻 64

[1] G. Korotcenkov, "Metal oxides for solid-state gas sensors: What determines our choice?," Materials Science and Engineering: B, vol. 139, no. 1, pp. 1-23, 2007.
[2] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors," Sensors (Basel), vol. 10, no. 3, pp. 2088-106, 2010.
[3] J. J. Hassan, M. A. Mahdi, C. W. Chin, H. Abu-Hassan, and Z. Hassan, "A high-sensitivity room-temperature hydrogen gas sensor based on oblique and vertical ZnO nanorod arrays," Sensors and Actuators B: Chemical, vol. 176, pp. 360-367, 2013.
[4] M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, "Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors," Nat Mater, vol. 6, no. 5, pp. 379-84, May 2007.
[5] X. S. Li, Y. Yang, Y. X. Liu, and H. Wu, "Composition design of bainitic steel for heavy truck front axle beam with inequable cross-sections," Materials Research Innovations, vol. 17, no. sup1, pp. 119-122, 2014.
[6] E. Brunet et al., "Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors," Sensors and Actuators B: Chemical, vol. 165, no. 1, pp. 110-118, 2012.
[7] D. Zhang et al., "Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices," Nano Letters, vol. 4, no. 10, pp. 1919-1924, 2004/10/01 2004.
[8] J. Wang et al., "Electrochemically Fabricated Polyaniline Nanoframework Electrode Junctions that Function as Resistive Sensors," Nano Letters, vol. 4, no. 9, pp. 1693-1697, 2004/09/01 2004.
[9] H. J. In, C. R. Field, and P. E. Pehrsson, "Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection," Nanotechnology, vol. 22, no. 35, p. 355501, Sep 02 2011.
[10] J. P. Conkle, B. J. Camp, and B. E. Welch, "Trace Composition of Human Respiratory Gas," Archives of Environmental Health, Article vol. 30, no. 6, p. 290, 1975.
[11] A. Manolis, "The diagnostic potential of breath analysis," Clinical chemistry, vol. 29, no. 1, pp. 5-15, 1983.
[12] S. E. Ebeler, A. J. Clifford, and T. Shibamoto, "Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human," Journal of Chromatography B: Biomedical Sciences and Applications, vol. 702, no. 1–2, pp. 211-215, 11/21/ 1997.
[13] S. Davies, P. Spanel, and D. Smith, "Quantitative analysis of ammonia on the breath of patients in end-stage renal failure," Kidney International, vol. 52, no. 1, pp. 223-228, 1997/07/01/ 1997.
[14] H.-W. Zan, W.-W. Tsai, Y.-r. Lo, Y.-M. Wu, and Y.-S. Yang, "Pentacene-Based Organic Thin Film Transistors for Ammonia Sensing," IEEE Sensors Journal, vol. 12, no. 3, pp. 594-601, 2012.
[15] M. Z. Dai et al., "Highly sensitive ammonia sensor with organic vertical nanojunctions for noninvasive detection of hepatic injury," Anal Chem, vol. 85, no. 6, pp. 3110-7, Mar 19 2013.
[16] L.-Y. Chang et al., "One-Minute Fish Freshness Evaluation by Testing the Volatile Amine Gas with an Ultrasensitive Porous-Electrode-Capped Organic Gas Sensor System," ACS Sensors, vol. 2, no. 4, pp. 531-539, 2017.
[17] S. Hoshino et al., "Influence of moisture on device characteristics of polythiophene-based field-effect transistors," Journal of Applied Physics, vol. 95, no. 9, pp. 5088-5093, 2004.
[18] S. Pal and A. K. Nandi, "Cocrystallization mechanism of poly(3-hexyl thiophenes) with different amount of chain regioregularity," Journal of Applied Polymer Science, vol. 101, no. 6, pp. 3811-3820, 2006.
[19] M. Al-Ibrahim, "Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene," Solar Energy Materials and Solar Cells, 2004.
[20] D. H. Kim et al., "Enhancement of Field-Effect Mobility Due to Surface-Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors," Advanced Functional Materials, vol. 15, no. 1, pp. 77-82, 2005.
[21] M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu, and E. P. Woo, "High Mobility Hole Transport Fluorene‐Triarylamine Copolymers," Advanced Materials, vol. 11, no. 3, pp. 241-246, 1999.
[22] Y. Liang et al., "For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%," Adv Mater, vol. 22, no. 20, pp. E135-8, May 25 2010.
[23] M. A. Lampert and P. Mark, "Current injection in solids," 1970.
[24] S. Karg, M. Meier, and W. Riess, "Light-emitting diodes based on poly-p-phenylene-vinylene: I. Charge-carrier injection and transport," Journal of applied physics, vol. 82, no. 4, pp. 1951-1960, 1997.
[25] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1928, vol. 119, no. 781, pp. 173-181: The Royal Society.
[26] M.-Y. Chuang, H.-W. Zan, P. Yu, Y.-C. Lai, and H.-F. Meng, "Gas permeable silver nanowire electrode for realizing vertical type sensitive gas sensor," Organic Electronics, vol. 15, no. 11, pp. 2769-2774, 2014.
[27] E.-C. Chen et al., "Multilayer rapid-drying blade coating for organic solar cells by low boiling point solvents," Japanese Journal of Applied Physics, vol. 53, no. 6, p. 062301, 2014.
[28] M. L. BROWN, D. M. HOLBROOK, E. F. HOERNING, M. G. LEGENDRE, and A. J. ST ANGELO, "Volatile indicators of deterioration in liquid egg products," Poultry Science, vol. 65, no. 10, pp. 1925-1933, 1986.

(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *