帳號:guest(18.222.168.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳宜郁
作者(外文):Wu, Yi-Yu
論文名稱(中文):像素960×540與1920×1080氮化鎵微型化發光二極體陣列之研製與應用
論文名稱(外文):Fabrication and Application of GaN-based Micro Light-Emitting Diodes Array with 960×540 pixels and 1920×1080 pixels
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):謝明勳
徐子傑
黃麒甄
黃雍勛
口試委員(外文):Hsieh, Ming-Hsun
Hsu, Tzu-Chieh
Huang, Chi-Chen
Huang, Yung-Hsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063518
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:103
中文關鍵詞:微型化發光二極體陣列氮化鎵高解析度覆晶技術微型顯示器自動對準技術
外文關鍵詞:micro-LED arrayGaNhigh resolutionflip chipmicro displayself-aligned
相關次數:
  • 推薦推薦:0
  • 點閱點閱:586
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要設計960×540氮化鎵微型發光二極體陣列並製作出微型化顯示器,以及設計1920×1080氮化鎵微型發光二極體陣列並利用自動對準技術製作出良好的特性,有藍光波段450 nm,綠光波段525 nm及紫外光波段380 nm。氮化鎵磊晶片是在圖形化的藍寶石基板上延特定方向成長單晶晶體,並控制其厚度及摻質濃度製作而成,接著將氮化鎵磊晶片上蝕刻出高原(MESA),並在n型與p型鍍上電極後,沉積介電質絕緣層,再蝕刻與金屬的接點通道,並在通道上鍍銦,最後使用結合與封裝技術,製作出微型化顯示器。
日常生活上,發光二極體常以照明、標誌為主,但我們希望能應用在可攜帶式微顯示器及無光罩微影技術,而微型發光二極體的優點:低功耗、高亮度、高效率、高均勻亮度等,都是非常重要的。首先,磊晶片包含十層量子井,其能夠盡可能增加電子電洞復合並轉換成光子,提高發光效率;在磊晶片上,利用銦錫氧化物(ITO)的透明導電膜層,使電流能夠在通道上均勻流過,提高電子電洞復合的效率,使光強度增加,而且銦錫氧化物能與p+型氮化鎵成歐姆接觸,降低功耗;最後,設計網格狀的n型電極,使電流至每個像素的路徑一致,達到高均勻亮度。
在本論文中,主要研究有波段450nm的藍光、525nm的綠光以及波段380nm的紫外光,並搭配不同結構的氮化鎵磊晶片。960×540的微型發光二極體陣列,像素大小為7.8微米,各個像素距離為12.8微米;1920×1080的微型發光二極體陣列,像素大小為3.9微米,各個像素距離為6.4微米。而我們的微型發光二極體陣列皆使用投影機與螢幕的常見比例16:9作為設計,以0.55吋作為顯示大小。
各種波段的960×540微型發光二極體陣列特性如下:在5伏特的逆偏壓下,藍光波段的漏電流為160 fA,綠光波段的漏電流為41.47 fA,紫外光波段的漏電流為1.29 fA。在正偏壓下,藍光波段的導通電壓為2.75伏特,綠光波段的導通電壓為2.5伏特,紫外光波段的導通電壓為3.15伏特。在注入1 mA電流下,藍光波段的光輸出功率為71.27 μW,綠光波段的光輸出功率為47.4 μW,紫外光波段的光輸出功率為64.65 μW。藍光波段最好的外部量子效率是5.222 %,綠光波段最好的外部量子效率是4.772 %,紫外光波段最好的外部量子效率是2.272 %。最後,我們成功製作出展示藍光、綠光及紫外光的微型發光二極體陣列之顯示。
自動對準技術的關鍵在於ICP蝕刻,而達到高原呈現啞鈴型,進而製作出1920×1080微型發光二極體陣列,而各種波段的特性如下:在5伏特的逆偏壓下,蘭光波段的漏電流為0.0821 pA,綠光波段的漏電流為0.175 pA,紫外光波段的漏電流為4.053 pA。在正偏壓下,藍光波段的導通電壓為2.72伏特,綠光波段的導通電壓為2.88伏特,紫外光波段的導通電壓為4.38伏特。在注入1 mA電流下,藍光波段的光輸出功率為24 μW,綠光波段的光輸出功率為17.7 μW,紫外光波段的光輸出功率為30.65 μW。藍光波段最好的外部量子效率是3.088 %,綠光波段最好的外部量子效率是2.489 %,紫外光波段最好的外部量子效率是1.242 %。
In this thesis, the major design the 960×540 Gallium Nitride (GaN) based micro light emitting diode array and develop it to micro display; design the 1920×1080 Gallium Nitride (GaN) based micro light emitting diode array and develop it to the good characteristic by self-aligned technology, the electroluminescence spectra for blue is 450 nm, for green is 525 nm, for UV is 380 nm. Gallium Nitride wafer is on top of the graphical sapphire substrate to epitaxy the direction of single crystal, and control it thickness and dopant concentration; a MESA is formed by ICP etching, after n-metal and p-metal deposited, depositing a dielectric layer, then etching a via hole at metal, and depositing indium, last, using the bonding [8] and packaging technology to produce a microdisplay.
The traditional application of LED often mains on signs and illumination, but we hope to be able to use in portable microdisplays and mask-free lithography, while the advantages of micro LED are low power consumption, high brightness, high power efficiency, uniform brightness, etc., are very important. First, the epitaxial wafer contains ten layers of quantum wells that can increase the recombination of electron-hole pair transfer to photon as much as possible for high power efficiency; on the epitaxial wafer, we use an Indium Tin Oxide (ITO) that can let current uniformly injecting for high brightness, and it's also ohmic contact with p+-GaN for low power consumption; Finally, we design the grid for n-type, which let each pixel have similar current path for good uniform brightness.
In this thesis, we major research blue LED, green LED, and UV LED for the various structure of epitaxial wafer. For 960×540 micro-LED array, a diameter of each pixel is 7.8 μm, the pitch is 12.8 μm from pixel to another near pixel. For 1920×1080 micro-LED array, a diameter of each pixel is 3.9 μm, the pitch is 6.4 μm from pixel to another near pixel. Our micro-LED arrays design from projector and display is the ratio of 16:9 on common, and our display is 0.55 inch.
For a single pixel characteristic of 960×540 micro-LED array, the reverse bias leakage current at -5 volts for blue-LED is 160 fA, for green-LED is 41.47 fA, for UV-LED is 1.29 fA. At forward bias, the turn-on voltage for blue-LED is 2.75 volts, for green-LED is 2.5 volts, and UV-LED is 3.15 volts. At 1 mA biasing current, the light output power for blue-LED is 71.27 μW, for green-LED is 47.4 μW, for UV-LED is 64.65 μW. The maximum external quantum efficiency for blue-LED is 5.222 %, for green-LED is 4.772 %, for UV-LED is 2.272 %.
The key to the self-aligned technology is ICP etching, and the MESA is dumbbell-shaped, and a 1920×1080 micro-LED array is fabricated. For a single pixel characteristic of 1920×1080 micro-LED array, the reverse bias leakage current at -5 volts for blue-LED is 0.0821 pA, for green-LED is 0.175 pA, for UV-LED is 4.053 pA. At forward bias, the turn-on voltage for blue-LED is 2.72 volts, for green-LED is 2.88 volts, and UV-LED is 4.38 volts. At 1 mA biasing current, the light output power for blue-LED is 24 μW, for green-LED is 17.7 μW, for UV-LED is 30.65 μW. The maximum external quantum efficiency for blue-LED is 3.088 %, for green-LED is 2.489 %, for UV-LED is 1.242 %.
摘要 I
Abstract III
致謝 VI
Contents VIII
List of Figure XII
Chapter 1 Introduction 1
1-1 Development of Light Emitting Diodes 1
1-2 Application of Light-Emitting Diodes 3
1-3 Motivation of Studying 6
Chapter 2 The Basic of Theory 10
2-1 Principle of Light Emitting Diode 10
2-2 Characteristic of Current versus Voltage 12
2-3 Characteristic of Light-output Power versus Current 17
2-4 Characteristic of Electroluminescence 20
Chapter 3 Experimental program 23
3-1 Device Structure 23
3-2 Idea of Micro LED Design 25
3-2-1 Idea of 960×540 Mask design 26
3-2-2 Idea of 1920×1080 Mask design 32
3-3 Experimental Steps 38
3-3-1 Process For 960×540 micro LED array 38
3-3-2 Parameters of ICP-RIE 46
3-3-3 Process For 1920×1080 micro LED array 47
3-4 Methods and equipment of measurement 51
3-4-1 Contact resistance and TLM measurements 51
3-4-2 System of I-V Curve and L-I Curve Measurement 53
3-4-2 System of E-L Measurement 55
Chapter 4 Measurement Result and Discussion 56
4-1 The 960×540 blue micro-LED array 56
4-1-1 Specific contact resistance between ITO film and p-metal 56
4-1-2 Specific contact resistance between n-GaN and n-metal 58
4-1-3 Analysis of I-V characteristic 59
4-1-4 Analysis of L-I characteristic 61
4-1-5 Analysis of E-L characteristic 62
4-2 The 960×540 green micro-LED array 64
4-2-1 Specific contact resistance between ITO film and p-metal 64
4-2-2 Specific contact resistance between n-GaN and n-metal 66
4-2-3 Analysis of I-V characteristic 67
4-2-4 Analysis of L-I characteristic 69
4-2-5 Analysis of E-L characteristic 70
4-3 The 960×540 UV micro-LED array 72
4-3-1 Specific contact resistance between ITO film and p-metal 72
4-3-2 Specific contact resistance between n-GaN and n-metal 74
4-3-3 Analysis of I-V characteristic 75
4-3-4 Analysis of L-I characteristic 77
4-3-5 Analysis of E-L characteristic 78
4-4 ICP etching test 80
4-5 The 1920×1080 blue micro-LED array 83
4-5-1 Analysis of I-V characteristic 83
4-5-2 Analysis of L-I characteristic 85
4-5-3 Analysis of E-L characteristic 86
4-6 The 1920×1080 Green micro-LED array 88
4-6-1 Analysis of I-V characteristic 88
4-6-2 Analysis of L-I characteristic 90
4-6-3 Analysis of E-L characteristic 91
4-7 The 1920×1080 UV micro-LED array 93
4-7-1 Analysis of I-V characteristic 93
4-7-2 Analysis of L-I characteristic 95
4-7-3 Analysis of E-L characteristic 96
Chapter 5 Conclusions 98
[1] 賴福興. "對應紅色供應鏈強勢崛起可行策略分析—以台灣 LED 上游產業晶電為例." 清華大學高階主管經營管理碩士在職專班學位論文 (2016): 1-71. P.8-15
[2] http://technews.tw/2016/09/22/micro-led-ledinside-forum-2016/
[3] http://technews.tw/2016/10/07/micro-led-and-cross-industry-consortium/
[4] E. Fred Schubert,” Light-Emitting Diodes (2006)”. E. Fred Schubert, 2006. Chapter4-5
[5] Wu Shuai. Design,” Fabrication and Testing of Micro-pixel Array Sub-280 Nm Deep Uv Light Emitting Diodes”. Diss. University of South Carolina, 2004. P10-18.
EQE
[6] Rajeev J. Ram, "Thermophotonics for ultra-high efficiency visible LEDs." Proc. of SPIE Vol. Vol. 10124. 2017.
[7] James R. Bonar, et al. "High-brightness low-power consumption microLED arrays." Proc. SPIE. Vol. 9768. 2016.
[8] F.Marion, et al. "A room temperature flip-chip technology for high pixel count micro-displays and imaging arrays." Electronic Components and Technology Conference (ECTC), 2016 IEEE 66th. IEEE, 2016.
[9] François. Templier, "GaN‐based emissive microdisplays: A very promising technology for compact, ultra‐high brightness display systems." Journal of the Society for Information Display 24.11 (2016): 669-675.
[10] Z. Y. Fan, J. Y. Lin, and H. X. Jiang. "III-nitride micro-emitter arrays: development and applications." Journal of Physics D: Applied Physics 41.9 (2008): 094001.
[11] H. W.Choi, C. W. Jeon, and M. D. Dawson. "High-resolution 128 x 96 nitride microdisplay." IEEE Electron Device Letters 25.5 (2004): 277-279.
[12] Ludovic Dupré, et al. "Processing and characterization of high resolution GaN/InGaN LED arrays at 10 micron pitch for micro display applications." Proc. of SPIE Vol. Vol. 10104. 2017.
[13] Ahmad Wafi Mahmood Zuhdi. “High performance drive circuits for integrated microLED/CMOS arrays for visible light communication (VLC).” Diss. University of Edinburgh, 2015. P.59
[14] Rajeev J Ram. "Thermophotonics for ultra-high efficiency visible LEDs." Proc. of SPIE Vol. Vol. 10124. 2017.
[15] Joachim Piprek. "Efficiency droop in nitride?based light?emitting diodes." physica status solidi (a) 207.10 (2010): 2217-2225.
[16] Neysha Lobo Ploch. "Chip designs for high efficiency III-nitride based ultraviolet light emitting diodes with enhanced light extraction." (2015).
[17] Murat Kaya Yapici, and Ilyas Farhat. "UV-LED exposure system for low-cost photolithography." SPIE Advanced Lithography. International Society for Optics and Photonics, 2014.
[18] Jaeyi Chun, et al. "Transfer of GaN LEDs from sapphire to flexible substrates by laser lift-off and contact printing." IEEE Photonics Technology Letters 24.23 (2012): 2115-2118.
[19] Zhao Jun Liu, et al. "A novel BLU-free full-color LED projector using LED on silicon micro-displays." IEEE Photonics Technology Letters 25.23 (2013): 2267-2270.
[20]http://www.semiconductor-today.com/news_items/2017/feb/osram_240217.shtml
[21]https://www.neowin.net/forum/topic/1235737-does-having-higher-resolution-mean-more-on-screen-content-pc-gaming/
[22]https://www.neowin.net/forum/topic/1235737-does-having-higher-resolution-mean-more-on-screen-content-pc-gaming/
[23]Ja-Soon Jang. "High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN–GaN superlattice." Applied Physics Letters 93.8 (2008): 081118.
[24] Di Zhu, et al. "The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes." Applied Physics Letters 94.8 (2009): 081113.
[25] Chao-Chyun An, et al. "Study on flip chip assembly of high density micro-LED array." Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2011 6th International. IEEE, 2011.
[26] 邹兵, et al. "LED 微显示技术." 光学仪器 4 (2015): 293-298.
[27] Moon Kee Choi, et al. "Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing." Nature communications 6 (2015).
[28] Zhao Jun Liu, et al. "360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays." Journal of Display Technology 9.8 (2013): 678-682.
[29] Wing Cheung Chong, et al. "60.4: A Novel Full‐Color 3LED Projection System using R‐G‐B Light Emitting Diodes on Silicon (LEDoS) Micro‐displays." SID Symposium Digest of Technical Papers. Vol. 44. No. 1. Blackwell Publishing Ltd, 2013.
[30] Selim Eminoglu, et al. "A 1280× 1024-15μm CTIA ROIC for SWIR FPAs." SPIE Defense+ Security. International Society for Optics and Photonics, 2015.
[31] https://en.wikipedia.org/wiki/Light-emitting_diode
[32] David Massoubre, et al. "Sub-Micron Lithography Using InGaN Micro-LEDs: Mask-Free Fabrication of LED Arrays." (2012).
[33] Hussein S. El-Ghoroury, and Zahir Y. Alpaslan. "Quantum photonic imager (QPI): a new display technology and its applications." Invited) Proceedings of The International Display Workshops. Vol. 21. 2014.
[34] Johannes Herrnsdorf, et al. "Active-matrix GaN micro light-emitting diode display with unprecedented brightness." IEEE Transactions on Electron Devices62.6 (2015): 1918-1925.
[35] Pengfei Tian, et al. "Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates." Journal of Applied Physics 115.3 (2014): 033112.
[36] Christopher A. Bower, et al. "Emissive displays with transfer-printed assemblies of 8 μm× 15 μm inorganic light-emitting diodes." Photonics Research 5.2 (2017): A23-A29.
[37] J. Day J. Li, et al. "Full-Scale Self-Emissive Blue and Green Microdisplays Based on GaN Micro-LED Arrays." Proc. of SPIE Vol. Vol. 8268.
[38] C‐W. Jeon, H. W. Choi, and M. D. Dawson. "A novel fabrication method for a 64× 64 matrix‐addressable GaN‐based micro‐LED array." physica status solidi (a) 200.1 (2003): 79-82.
[39] Chan-Wook Jeon, et al. "High-density matrix-addressable AlInGaN-based 368-nm microarray light-emitting diodes." IEEE photonics technology letters 16.11 (2004): 2421-2423.
[40] Tae‐il Kim, et al. "High‐efficiency, microscale GaN light‐emitting diodes and their thermal properties on unusual substrates." Small 8.11 (2012): 1643-1649.
[41] Z. Gong, et al. "Matrix-addressable micropixellated InGaN light-emitting diodes with uniform emission and increased light output." IEEE Transactions on Electron Devices 54.10 (2007): 2650-2658.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *