帳號:guest(3.15.144.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳威翰
作者(外文):Chen, Wei-Han
論文名稱(中文):石墨烯/h-BN之堆疊結構之探討
論文名稱(外文):The study of stacked graphene / h-BN structures
指導教授(中文):吳玉書
指導教授(外文):Wu, Yu-Shu
口試委員(中文):邱博文
陳啟東
口試委員(外文):Chiu, Po-Wen
Chen, Chii-Dong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063515
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:106
中文關鍵詞:石墨烯六角氮化硼異質結構電賀陷阱水氧參雜
外文關鍵詞:Grapheneh-BNHeterostructureCharged impuritiesAtmospheric adsorptions
相關次數:
  • 推薦推薦:0
  • 點閱點閱:156
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
二維材料石墨烯,是一種十分容易受到環境的水氣、氧氣以及其他雜質所影響的一種材料。當石墨烯轉移至舖有二氧化矽矽基板上時,基板表面所造成的不平整以及電子-電洞水窪 (electron-hole puddles) 會使石墨烯產生皺摺以及電荷分布不均等,進而造成很強的長程及短程散射, 以及應變引發之虛磁場 (pseudo magnetic field)效應 。為了降低石墨烯受到環境因素的影響,像是減緩基板以及大氣水氧造成電荷分布隨機參雜問題,我們分別在石墨烯底層和上層加入絕緣材料-六角氮化硼(h-BN)此種具有原子級平坦以及均勻電荷分布的特殊二維材料,集成為一堆疊結構, 類似凡德瓦異質結構(Van-der Waals heterostructure),以期達到有效改善石墨烯電晶體的傳輸特性。
  本文我們分別製作了石墨烯(G)、石墨烯/氮化硼(G/BN)以及氮化硼/石墨烯/氮化硼(BN/G/BN)三種不同結構的電晶體,並在G/BN以及BN/G/BN拉曼光譜中觀測到了G-peak的紅移,以及電性量測上遲滯現象的減緩等現象。並且在G/BN的結構中觀察到電洞載子高達20000cm2/V-s的優良傳輸性質。
Graphene is a two dimensional material which is one atom thick and, due to its high surface to volume ratio, is easily affected by environment such as atmospheric adsorptions and charged impurities incurred, unpredictable doping effect. For graphene flakes transferred onto SiO2/Si substrate, wrinkles and electron-hole puddles are present on graphene surface due to the surface roughness and charge traps in SiO2. It is known that the two-dimensional insulating hexagonal BN (h-BN) exhibits favorable physical properties such as atomic-level flat and charge-trap-free surface, which is widely used as the substrate or encapsulating layers for graphene to protect it against the environment, and is expected to improve transport and intrinsic properties of graphene.
In this thesis, we investigate the intrinsic and transport properties exhibited in both staked G/h-BN and h-BN/G/h-BN structures similar to van der Waals Heterostructures. The down-shift of both the Raman G-peak and charge neutrality point (CNP), and also the mitigation of hysteresis phenomenon are observed in the stacked structures in comparison with the system with graphene directly deposited on SiO2/Si substrate. We also achieve an extraordinary hole mobility as high as 20000 cm2/V-s in G/BN back-gate device.
目錄

第一章 緒論 1
1.1 半導體演進和所面臨的問題 1
1.2石墨烯以及二維材料的發現 3
第二章 石墨烯 5
2.1石墨烯的基本物性 5
2.1.1 石墨烯晶體結構 5
2.1.2 石墨烯電子能帶 8
2.1.3 石墨烯聲子能帶 12
2.1.4 如何打開石墨烯能隙 13
2.2石墨烯的基本電性 16
2.2.1 石墨烯傳輸特性 16
2.2.2 石墨烯散射源 18
2.2.3 石墨烯背向閘極電晶體電性分析 22
2.3石墨烯與氮化硼之凡德瓦異質結構 24
2.3.1氮化硼基本特性 24
2.3.2 石墨烯以氮化硼為基底電性傳輸 25
第三章 拉曼光譜分析 27
3.1 拉曼散射 27
3.1.1 拉曼散射基本原理 27
3.1.2 固態理論分析 32
3.2 拉曼檢測石墨烯 34
3.2.1 石墨烯在拉曼光譜的聲子散射 34
3.2.2 石墨烯層數判定 38
3.2.3 石墨烯的缺陷 40
第四章 石墨烯元件製備 43
4.1 石墨烯電晶體(graphene FET)操作原理 43
4.2 系統儀器介紹 44
4.2.1 黃光曝光機 (Optical lithography) 45
4.2.2 電子束微影 (Electron beam lithography) 46
4.2.3 反應式離子蝕刻 (Reactive Ion etching) 48
4.2.4 熱金屬蒸鍍 (Thermal evaporation) 49
4.3 雙層石墨烯的成長與分析 50
4.3.1化學氣相沉積反應機制 51
4.3.2 實驗準備 52
4.3.3 石墨烯成長 53
4.4 石墨烯元件製作流程 56
4.4.1基板備製 56
4.4.2石墨烯轉移 60
4.4.3 汲極、源極電極設計 63
4.4.4 石墨烯通道定義(isolation) 67
第五章 量測結果與分析 70
5.1 拉曼分析 70
5.1.1 石墨烯拉曼光譜 70
5.1.2 h-BN拉曼光譜 73
5.1.3 石墨烯與h-BN異質結構拉曼光譜 75
5.2 石墨烯電晶體背向閘極電壓量測 79
5.2.1 石墨烯背向閘極量測 80
5.2.2 石墨烯/氮化硼背向閘極量測 86
5.2.3 氮化硼/石墨烯/氮化硼背向閘極量測 90
5.2.4 存在於異質結構介面中的氣泡 94
第六章 結論 97
參考文獻 98

[1] J. Bardeen, W.H. Brattain, The transistor, a semi-conductor triode, Physical Review, 74 (1948) 230.
[2] F. Schwierz, J.J. Liou, H. Wong, Nanometer CMOS, Pan Stanford Publishing2010.
[3] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature nanotechnology, 3 (2008) 206-209.
[4] R. Murali, Y. Yang, K. Brenner, T. Beck, J.D. Meindl, Breakdown current density of graphene nanoribbons, Applied Physics Letters, 94 (2009) 243114.
[5] J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, Two-dimensional phonon transport in supported graphene, Science, 328 (2010) 213-216.
[6] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, science, 321 (2008) 385-388.
[7] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320 (2008) 1308-1308.
[8] J. Wang, F. Ma, M. Sun, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications, RSC Advances, 7 (2017) 16801-16822.
[9] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature materials, 6 (2007) 183-191.
[10] A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of modern physics, 81 (2009) 109.
[11] P.R. Wallace, The band theory of graphite, Physical Review, 71 (1947) 622.
[12] P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics, Nature nanotechnology, 2 (2007) 605-615.
[13] V. Ariel, Effective Mass and Energy-Mass Relationship, arXiv preprint arXiv:1205.3995, DOI (2012).
[14] M. Dresselhaus, A. Jorio, R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy, Annu. Rev. Condens. Matter Phys., 1 (2010) 89-108.
[15] F. Schwierz, Graphene transistors, Nature nanotechnology, 5 (2010) 487-496.
[16] L. Yang, C.-H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie, Quasiparticle energies and band gaps in graphene nanoribbons, Physical Review Letters, 99 (2007) 186801.
[17] H. Raza, E.C. Kan, Armchair graphene nanoribbons: Electronic structure and electric-field modulation, Physical Review B, 77 (2008) 245434.
[18] E.V. Castro, K. Novoselov, S. Morozov, N. Peres, J.L. Dos Santos, J. Nilsson, F. Guinea, A. Geim, A.C. Neto, Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect, Physical review letters, 99 (2007) 216802.
[19] Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening, ACS nano, 2 (2008) 2301-2305.
[20] P. Xu, D. Qi, J. Schoelz, J. Thompson, P. Thibado, V. Wheeler, L. Nyakiti, R. Myers-Ward, C. Eddy, D. Gaskill, Multilayer graphene, moiré patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC, Carbon, 80 (2014) 75-81.
[21] J. Jung, A.M. DaSilva, A.H. MacDonald, S. Adam, Origin of band gaps in graphene on hexagonal boron nitride, Nature communications, 6 (2015).
[22] M. Müller, M. Bräuninger, B. Trauzettel, Temperature dependence of the conductivity of ballistic graphene, Physical review letters, 103 (2009) 196801.
[23] A.F. Young, P. Kim, Quantum interference and Klein tunneling in graphene heterojunctions, arXiv preprint arXiv:0808.0855, DOI (2008).
[24] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, C.W. Beenakker, Sub-Poissonian shot noise in graphene, Physical Review Letters, 96 (2006) 246802.
[25] S.D. Sarma, S. Adam, E. Hwang, E. Rossi, Electronic transport in two-dimensional graphene, Reviews of Modern Physics, 83 (2011) 407.
[26] K.I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 146 (2008) 351-355.
[27] Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. Hwang, S.D. Sarma, H. Stormer, P. Kim, Measurement of scattering rate and minimum conductivity in graphene, Physical review letters, 99 (2007) 246803.
[28] S. Fratini, F. Guinea, Substrate-limited electron dynamics in graphene, Physical Review B, 77 (2008) 195415.
[29] J.-H. Chen, C. Jang, M. Fuhrer, E. Williams, M. Ishigami, Charged impurity scattering in graphene, arXiv preprint arXiv:0708.2408, DOI (2007).
[30] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B.J. LeRoy, STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride, arXiv preprint arXiv:1102.2642, DOI (2011).
[31] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.v. Smet, K. Von Klitzing, A. Yacoby, Observation of electron-hole puddles in graphene using a scanning single electron transistor, arXiv preprint arXiv:0705.2180, DOI (2007).
[32] L. Ponomarenko, A. Geim, A. Zhukov, R. Jalil, S. Morozov, K. Novoselov, V. Cheianov, V. Fal'ko, K. Watanabe, T. Taniguchi, Tunable metal-insulator transition in double-layer graphene heterostructures, arXiv preprint arXiv:1107.0115, DOI (2011).
[33] S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J.A. Jaszczak, A. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Physical review letters, 100 (2008) 016602.
[34] E. Hwang, S. Adam, S.D. Sarma, Carrier transport in two-dimensional graphene layers, Physical review letters, 98 (2007) 186806.
[35] K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, Metal/graphene contact as a performance killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance, Electron Devices Meeting (IEDM), 2009 IEEE International, IEEE, 2009, pp. 1-4.
[36] Z. Zhang, H. Xu, H. Zhong, L.-M. Peng, Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements, Applied Physics Letters, 101 (2012) 213103.
[37] S. Costa, J.E. Weis, O. Frank, M. Fridrichová, M. Kalbac, Monitoring the doping of graphene on SiO 2/Si substrates during the thermal annealing process, RSC Advances, 6 (2016) 72859-72864.
[38] T. Ando, Screening effect and impurity scattering in monolayer graphene, Journal of the Physical Society of Japan, 75 (2006) 074716.
[39] G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. Van Den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Physical Review B, 76 (2007) 073103.
[40] N. Liu, Z. Pan, L. Fu, C. Zhang, B. Dai, Z. Liu, The origin of wrinkles on transferred graphene, Nano Research, 4 (2011) 996-1004.
[41] Y. Nam, D.-K. Ki, D. Soler-Delgado, A.F. Morpurgo, Electron-hole collision limited transport in charge-neutral bilayer graphene, Nat Phys, advance online publication (2017).
[42] C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, Boron nitride substrates for high-quality graphene electronics, Nature nanotechnology, 5 (2010) 722-726.
[43] J.R. Ferraro, Introductory raman spectroscopy, Academic press2003.
[44] N. Colthup, Introduction to infrared and Raman spectroscopy, Elsevier2012.
[45] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature nanotechnology, 8 (2013) 235-246.
[46] L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, Raman spectroscopy in graphene, Physics Reports, 473 (2009) 51-87.
[47] S. Reich, C. Thomsen, Raman spectroscopy of graphite, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 362 (2004) 2271-2288.
[48] C. Casiraghi, S. Pisana, K. Novoselov, A. Geim, A. Ferrari, Raman fingerprint of charged impurities in graphene, Applied Physics Letters, 91 (2007) 233108.
[49] Z. Ni, Y. Wang, T. Yu, Z. Shen, Raman spectroscopy and imaging of graphene, Nano Research, 1 (2008) 273-291.
[50] Y. Wang, Z. Ni, Z. Shen, H. Wang, Y. Wu, Interference enhancement of Raman signal of graphene, Applied Physics Letters, 92 (2008) 043121.
[51] D. Yoon, H. Moon, Y.-W. Son, J.S. Choi, B.H. Park, Y.H. Cha, Y.D. Kim, H. Cheong, Interference effect on Raman spectrum of graphene on SiO 2/Si, Physical Review B, 80 (2009) 125422.
[52] C. Thomsen, S. Reich, Double resonant Raman scattering in graphite, Physical review letters, 85 (2000) 5214.
[53] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films, Nano letters, 6 (2006) 2667-2673.
[54] Z.H. Ni, H.M. Wang, Y. Ma, J. Kasim, Y.H. Wu, Z.X. Shen, Tunable stress and controlled thickness modification in graphene by annealing, ACS nano, 2 (2008) 1033-1039.
[55] B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, Z. Liu, Photochemical chlorination of graphene, Acs Nano, 5 (2011) 5957-5961.
[56] A. Obraztsov, E. Obraztsova, A. Tyurnina, A. Zolotukhin, Chemical vapor deposition of thin graphite films of nanometer thickness, Carbon, 45 (2007) 2017-2021.
[57] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.-S. Pei, Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters, 93 (2008) 113103.
[58] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324 (2009) 1312-1314.
[59] A. Reina, H. Son, L. Jiao, B. Fan, M.S. Dresselhaus, Z. Liu, J. Kong, Transferring and identification of single-and few-layer graphene on arbitrary substrates, The Journal of Physical Chemistry C, 112 (2008) 17741-17744.
[60] X. Li, W. Cai, L. Colombo, R.S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano letters, 9 (2009) 4268-4272.
[61] R. Sevak Singh, R. Yingjie Tay, W. Leong Chow, S. Hon Tsang, G. Mallick, E.H. Tong Teo, Band gap effects of hexagonal boron nitride using oxygen plasma, Applied Physics Letters, 104 (2014) 163101.
[62] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nature communications, 3 (2012) 699.
[63] W. Fang, A.L. Hsu, R. Caudillo, Y. Song, A.G. Birdwell, E. Zakar, M. Kalbac, M. Dubey, T. Palacios, M.S. Dresselhaus, Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy, Nano letters, 13 (2013) 1541-1548.
[64] A.G. Garcia, M. Neumann, F.o. Amet, J.R. Williams, K. Watanabe, T. Taniguchi, D. Goldhaber-Gordon, Effective cleaning of hexagonal boron nitride for graphene devices, Nano letters, 12 (2012) 4449-4454.
[65] J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Electric field effect tuning of electron-phonon coupling in graphene, Physical review letters, 98 (2007) 166802.
[66] N.-C. Yeh, C.-C. Hsu, M. Teague, J.-Q. Wang, D. Boyd, C.-C. Chen, Nanoscale strain engineering of graphene and graphene-based devices, Acta Mechanica Sinica, 32 (2016) 497-509.
[67] D.H. Tien, J.-Y. Park, K.B. Kim, N. Lee, T. Choi, P. Kim, T. Taniguchi, K. Watanabe, Y. Seo, Study of Graphene-based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process, ACS applied materials & interfaces, 8 (2016) 3072-3078.
[68] D.B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G.S. Tulevski, J.C. Tsang, P. Avouris, Chemical doping and electron− hole conduction asymmetry in graphene devices, Nano Letters, 9 (2008) 388-392.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *