|
[1] J. Bardeen, W.H. Brattain, The transistor, a semi-conductor triode, Physical Review, 74 (1948) 230. [2] F. Schwierz, J.J. Liou, H. Wong, Nanometer CMOS, Pan Stanford Publishing2010. [3] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature nanotechnology, 3 (2008) 206-209. [4] R. Murali, Y. Yang, K. Brenner, T. Beck, J.D. Meindl, Breakdown current density of graphene nanoribbons, Applied Physics Letters, 94 (2009) 243114. [5] J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, Two-dimensional phonon transport in supported graphene, Science, 328 (2010) 213-216. [6] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, science, 321 (2008) 385-388. [7] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320 (2008) 1308-1308. [8] J. Wang, F. Ma, M. Sun, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications, RSC Advances, 7 (2017) 16801-16822. [9] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature materials, 6 (2007) 183-191. [10] A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of modern physics, 81 (2009) 109. [11] P.R. Wallace, The band theory of graphite, Physical Review, 71 (1947) 622. [12] P. Avouris, Z. Chen, V. Perebeinos, Carbon-based electronics, Nature nanotechnology, 2 (2007) 605-615. [13] V. Ariel, Effective Mass and Energy-Mass Relationship, arXiv preprint arXiv:1205.3995, DOI (2012). [14] M. Dresselhaus, A. Jorio, R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy, Annu. Rev. Condens. Matter Phys., 1 (2010) 89-108. [15] F. Schwierz, Graphene transistors, Nature nanotechnology, 5 (2010) 487-496. [16] L. Yang, C.-H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie, Quasiparticle energies and band gaps in graphene nanoribbons, Physical Review Letters, 99 (2007) 186801. [17] H. Raza, E.C. Kan, Armchair graphene nanoribbons: Electronic structure and electric-field modulation, Physical Review B, 77 (2008) 245434. [18] E.V. Castro, K. Novoselov, S. Morozov, N. Peres, J.L. Dos Santos, J. Nilsson, F. Guinea, A. Geim, A.C. Neto, Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect, Physical review letters, 99 (2007) 216802. [19] Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening, ACS nano, 2 (2008) 2301-2305. [20] P. Xu, D. Qi, J. Schoelz, J. Thompson, P. Thibado, V. Wheeler, L. Nyakiti, R. Myers-Ward, C. Eddy, D. Gaskill, Multilayer graphene, moiré patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC, Carbon, 80 (2014) 75-81. [21] J. Jung, A.M. DaSilva, A.H. MacDonald, S. Adam, Origin of band gaps in graphene on hexagonal boron nitride, Nature communications, 6 (2015). [22] M. Müller, M. Bräuninger, B. Trauzettel, Temperature dependence of the conductivity of ballistic graphene, Physical review letters, 103 (2009) 196801. [23] A.F. Young, P. Kim, Quantum interference and Klein tunneling in graphene heterojunctions, arXiv preprint arXiv:0808.0855, DOI (2008). [24] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, C.W. Beenakker, Sub-Poissonian shot noise in graphene, Physical Review Letters, 96 (2006) 246802. [25] S.D. Sarma, S. Adam, E. Hwang, E. Rossi, Electronic transport in two-dimensional graphene, Reviews of Modern Physics, 83 (2011) 407. [26] K.I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 146 (2008) 351-355. [27] Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. Hwang, S.D. Sarma, H. Stormer, P. Kim, Measurement of scattering rate and minimum conductivity in graphene, Physical review letters, 99 (2007) 246803. [28] S. Fratini, F. Guinea, Substrate-limited electron dynamics in graphene, Physical Review B, 77 (2008) 195415. [29] J.-H. Chen, C. Jang, M. Fuhrer, E. Williams, M. Ishigami, Charged impurity scattering in graphene, arXiv preprint arXiv:0708.2408, DOI (2007). [30] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B.J. LeRoy, STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride, arXiv preprint arXiv:1102.2642, DOI (2011). [31] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.v. Smet, K. Von Klitzing, A. Yacoby, Observation of electron-hole puddles in graphene using a scanning single electron transistor, arXiv preprint arXiv:0705.2180, DOI (2007). [32] L. Ponomarenko, A. Geim, A. Zhukov, R. Jalil, S. Morozov, K. Novoselov, V. Cheianov, V. Fal'ko, K. Watanabe, T. Taniguchi, Tunable metal-insulator transition in double-layer graphene heterostructures, arXiv preprint arXiv:1107.0115, DOI (2011). [33] S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J.A. Jaszczak, A. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Physical review letters, 100 (2008) 016602. [34] E. Hwang, S. Adam, S.D. Sarma, Carrier transport in two-dimensional graphene layers, Physical review letters, 98 (2007) 186806. [35] K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, Metal/graphene contact as a performance killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance, Electron Devices Meeting (IEDM), 2009 IEEE International, IEEE, 2009, pp. 1-4. [36] Z. Zhang, H. Xu, H. Zhong, L.-M. Peng, Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements, Applied Physics Letters, 101 (2012) 213103. [37] S. Costa, J.E. Weis, O. Frank, M. Fridrichová, M. Kalbac, Monitoring the doping of graphene on SiO 2/Si substrates during the thermal annealing process, RSC Advances, 6 (2016) 72859-72864. [38] T. Ando, Screening effect and impurity scattering in monolayer graphene, Journal of the Physical Society of Japan, 75 (2006) 074716. [39] G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. Van Den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Physical Review B, 76 (2007) 073103. [40] N. Liu, Z. Pan, L. Fu, C. Zhang, B. Dai, Z. Liu, The origin of wrinkles on transferred graphene, Nano Research, 4 (2011) 996-1004. [41] Y. Nam, D.-K. Ki, D. Soler-Delgado, A.F. Morpurgo, Electron-hole collision limited transport in charge-neutral bilayer graphene, Nat Phys, advance online publication (2017). [42] C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, Boron nitride substrates for high-quality graphene electronics, Nature nanotechnology, 5 (2010) 722-726. [43] J.R. Ferraro, Introductory raman spectroscopy, Academic press2003. [44] N. Colthup, Introduction to infrared and Raman spectroscopy, Elsevier2012. [45] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature nanotechnology, 8 (2013) 235-246. [46] L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, Raman spectroscopy in graphene, Physics Reports, 473 (2009) 51-87. [47] S. Reich, C. Thomsen, Raman spectroscopy of graphite, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 362 (2004) 2271-2288. [48] C. Casiraghi, S. Pisana, K. Novoselov, A. Geim, A. Ferrari, Raman fingerprint of charged impurities in graphene, Applied Physics Letters, 91 (2007) 233108. [49] Z. Ni, Y. Wang, T. Yu, Z. Shen, Raman spectroscopy and imaging of graphene, Nano Research, 1 (2008) 273-291. [50] Y. Wang, Z. Ni, Z. Shen, H. Wang, Y. Wu, Interference enhancement of Raman signal of graphene, Applied Physics Letters, 92 (2008) 043121. [51] D. Yoon, H. Moon, Y.-W. Son, J.S. Choi, B.H. Park, Y.H. Cha, Y.D. Kim, H. Cheong, Interference effect on Raman spectrum of graphene on SiO 2/Si, Physical Review B, 80 (2009) 125422. [52] C. Thomsen, S. Reich, Double resonant Raman scattering in graphite, Physical review letters, 85 (2000) 5214. [53] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films, Nano letters, 6 (2006) 2667-2673. [54] Z.H. Ni, H.M. Wang, Y. Ma, J. Kasim, Y.H. Wu, Z.X. Shen, Tunable stress and controlled thickness modification in graphene by annealing, ACS nano, 2 (2008) 1033-1039. [55] B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, Z. Liu, Photochemical chlorination of graphene, Acs Nano, 5 (2011) 5957-5961. [56] A. Obraztsov, E. Obraztsova, A. Tyurnina, A. Zolotukhin, Chemical vapor deposition of thin graphite films of nanometer thickness, Carbon, 45 (2007) 2017-2021. [57] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.-S. Pei, Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters, 93 (2008) 113103. [58] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324 (2009) 1312-1314. [59] A. Reina, H. Son, L. Jiao, B. Fan, M.S. Dresselhaus, Z. Liu, J. Kong, Transferring and identification of single-and few-layer graphene on arbitrary substrates, The Journal of Physical Chemistry C, 112 (2008) 17741-17744. [60] X. Li, W. Cai, L. Colombo, R.S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano letters, 9 (2009) 4268-4272. [61] R. Sevak Singh, R. Yingjie Tay, W. Leong Chow, S. Hon Tsang, G. Mallick, E.H. Tong Teo, Band gap effects of hexagonal boron nitride using oxygen plasma, Applied Physics Letters, 104 (2014) 163101. [62] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nature communications, 3 (2012) 699. [63] W. Fang, A.L. Hsu, R. Caudillo, Y. Song, A.G. Birdwell, E. Zakar, M. Kalbac, M. Dubey, T. Palacios, M.S. Dresselhaus, Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy, Nano letters, 13 (2013) 1541-1548. [64] A.G. Garcia, M. Neumann, F.o. Amet, J.R. Williams, K. Watanabe, T. Taniguchi, D. Goldhaber-Gordon, Effective cleaning of hexagonal boron nitride for graphene devices, Nano letters, 12 (2012) 4449-4454. [65] J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Electric field effect tuning of electron-phonon coupling in graphene, Physical review letters, 98 (2007) 166802. [66] N.-C. Yeh, C.-C. Hsu, M. Teague, J.-Q. Wang, D. Boyd, C.-C. Chen, Nanoscale strain engineering of graphene and graphene-based devices, Acta Mechanica Sinica, 32 (2016) 497-509. [67] D.H. Tien, J.-Y. Park, K.B. Kim, N. Lee, T. Choi, P. Kim, T. Taniguchi, K. Watanabe, Y. Seo, Study of Graphene-based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process, ACS applied materials & interfaces, 8 (2016) 3072-3078. [68] D.B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G.S. Tulevski, J.C. Tsang, P. Avouris, Chemical doping and electron− hole conduction asymmetry in graphene devices, Nano Letters, 9 (2008) 388-392.
|