帳號:guest(3.143.203.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許嘉玲
作者(外文):Hsu, Chia-Ling
論文名稱(中文):側向耦合浮動金屬閘極鰭式場效電晶體之差動式可多次寫入記憶體元件
論文名稱(外文):Differential Multiple-Time-Programming Memory Cells by Laterally Coupled Floating Metal Gate FinFETs
指導教授(中文):金雅琴
指導教授(外文):King, Ya-Chin
口試委員(中文):朱文定
林崇榮
口試委員(外文):Chu, Wen-Ting
Lin, Chrong Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063513
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:70
中文關鍵詞:鰭式場效電晶體多次寫入記憶體浮動閘極元件
外文關鍵詞:FinFETmultiple-time-programming memoryfloating gate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:479
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著電子科技的發展,將記憶體整合至單一晶片已是一個重要的議題,而這類嵌入式記憶通常需要相容於CMOS邏輯製程,意味著不需要額外的光罩與成本便可與其他電路整合。隨著製程微縮,先進製程紛紛採用立體結構FinFET製程,然而,僅有少數幾種非揮發性記憶體可相容於此製程。本論文提出一種符合FinFET邏輯製程的新型N通道可多次寫入非揮發性記憶體,並採用差動式的結構使其克服製程微縮下的資料保存性問題。
新型N通道差動式記憶體由一個選擇電晶體及兩個浮動閘極組成,並透過接觸與金屬閘極間的電容進行側向耦合,提高此記憶體的控制力。此記憶體採用通道熱電子注入進行編程,利用Fowler-Nordheim穿隧效應進行電性抹除,並可成功在3.3V進行低電壓行操作。此元件經過寫入抹除循環測試,表現出高度的穩定性與可靠性。此元件的資料保存性並不足以達到一般的電子商品標準,在本篇論文中亦提出一個自我修復的機制已延續其資料保存的生命週期。此新型記憶體具有低壓操作的能力,並擁有良好的操作特性與耐久度,利用其差動式結構亦可提高其資料保存性,為符合FinFET邏輯製程的系統整合晶片提供新的選擇與應用。
With the growth of electronic products, the integration of the memory module to a chip is an important issue. These embedded memories must be compatible with CMOS logic process, namely, it can be integrated with other circuits without additional mask and cost. When the technology scales down, the advanced process selects 3D structures such as FinFET structures to overcome some problems such as gate contorl capability degradation or increase of leakage current. A few non-volatile memories can be fully compatible with the FinFET logic process. This study proposes a new n-channel multiple-time programming memory cell with a differential structure to overcome the data retention problem.
The new n-channel differential multiple-time programming memory is composed of one select transistor and two floating gates. It enhances the controllability by laterally coupled capacitance between the slot contacts and the metal gate. This cell is programmed by channel hot electron injection to program the cell, and erases by Fowler-Nordheim tunneling, under 3.3V. The cell also shows good endurance up to 100k P/E cycles. Data retention capability of this cell is the worst challenging problem for maintaining data non-volatility. Therefore, the study proposes a self-recovery mechanism to enhance the data lifetime. This memory cell can operate at low voltage and good operation performance and endurance, it can also improve the data retention in a differential structure, make it be a promising solution for the embedded memory in FinFET logic process.
摘要 i
Abstract ii
致謝 iii
內文目錄 iv
附圖目錄 vi
附表目錄 viii
第一章 緒論 1
1.1邏輯非揮發性記憶體介紹及應用 1
1.2論文大綱 2
第二章 FinFET製程下的非揮發性記憶體 5
2.1 電阻式記憶體 5
2.2 反熔絲 6
2.3 載子注入機制回顧 7
2.4 小結 9
第三章 新型差動式側向耦合多次寫入記憶體結構與操作原理 14
3.1 記憶體元件結構與製程 14
3.2 差動式記憶體之操作流程 16
3.3 記憶體元件操作機制 17
3.4小結 18
第四章 新型差動式側向耦合多次寫入記憶體量測結果 31
4.1差動式記憶體元件基本操作 31
4.2元件可靠度分析 34
4.3小結 37
第五章 資料可靠度最佳化 50
5.1資料流失機制 50
5.2 增進資料可靠度之方法 51
5.3 小結 53
第六章 結論 62
6.1 新元件與其他相容於FinFET邏輯製程的非揮發性記憶體比較… 62
6.2 結語與未來展望 62
參考文獻…..……………………………………………………………….64

[1]Y. Roizin, E. Pikhay, V. Dayan and A. Heiman, "High Density MTP Logic NVM for Power Management Applications," 2009 IEEE International Memory Workshop, Monterey, CA, 2009, pp. 1-2.
[2]S. Shukuri, S. Shimizu, N. Ajika, T. Ogura, M. Mihara, Y. Kawajiri, K. Kobayashi, and M. Nakashima , "A 10k-Cycling Reliable 90nm Logic NVM "eCFlash" (Embedded CMOS Flash) Technology," 2011 3rd IEEE Memory Workshop (IMW), Monterey, CA, 2011, pp.1-2.
[3]J. Peng, G. Rosendale, M. Fliesler, D. Fong, J. Wang, C. Ng, Z. Liu, and H. Luan, "A Novel Embedded OTP NVM Using Standard Foundry CMOS Logic Technology," 2006 21st IEEE Non-Volatile Semiconductor Memory Workshop, Monterey, CA, 2006, pp. 24-26.
[4]B. Wang, H. Nguyen, Y. Ma and R. Paulsen, "Highly Reliable 90-nm Logic Multitime Programmable NVM Cells Using Novel Work-
Function-Engineered Tunneling Devices," in IEEE Transactions on Electron Devices, vol. 54, no. 9, pp. 2526-2530, Sept. 2007.
[5]H. Y. Wu, C. W. Tsai, C. W. Lien, Y. D. Chih and C. J. Lin, "A High-Density MTP Cell With Contact Coupling Gates by Pure CMOS Logic Process," in IEEE Electron Device Letters, vol. 32, no. 10, pp. 1352-1354, Oct. 2011.
[6]W. Y. Hsiao, P. C. Peng, T. S. Chang, Y. D. Chih, W. C. Tsai, M. F. Chang, T. F. Chien, Y. C. King, and C. J. Lin, "A New High-Density Twin-Gate Isolation One-Time Programmable Memory Cell in Pure 28-nm CMOS Logic Process,"in IEEE Transactions on Electron Devices, vol. 62, no. 1, pp. 121-127, Jan. 2015.
[7]C. W. Lien, H. Y. Wu, C. W. Tsai, C. M. Huang, Y. D. Chih, T. L. Lee, and C. J. Lin , "A New 2T Contact Coupling Gate MTP Memory in Fully CMOS Compatible Process," in IEEE Transactions on Electron Devices, vol. 59, no. 7, pp. 1899-1905, July 2012.
[8]R. S. J. Shen, M. Y. Wu, H. M. Chen and C. C. H. Lu, "A high-density logic CMOS process compatible non-volatile memory for sub-28nm technologies," 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, 2014, pp.1-2.
[9]P. C. Peng, Y. Z. Chen, W. Y. Hsiao, K. H. Chen, C. P. Lin, B. Z. Tien, T. S. Chang, C. J. Lin, and Y. C. King, "High-Density FinFET One-Time Programmable Memory Cell With Intra-Fin-Cell-Isolation Technology," in IEEE Electron Device Letters, vol. 36, no. 10, pp. 1037-1039, Oct. 2015.
[10]H. Y. Chen, H. H. Chen, Y. C. King and C. J. Lin,
Investigation of Set/Reset Operations in CMOS-Logic-Compatible Contact Backfilled RRAMs," in IEEE Transactions on Device and Materials Reliability, vol. 16, no. 3, pp. 370-375, Sept. 2016.
[11]C. Y. Mei, W. C. Shen, Y. D. Chih, Y. C. King and C. J. Lin, "28nm high-k metal gate RRAM with fully compatible CMOS logic processes," 2013 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, 2013, pp. 1-2.
[12]C. Y. Mei, W. C. Shen, C. H. Wu, Y. D. Chih, Y. C. King, C. J. Lin, M. J. Tsai, K. H. Tsai and F. T. Chen, "28-nm 2T High-$K$ Metal Gate Embedded RRAM With Fully Compatible CMOS Logic Processes," in IEEE Electron Device Letters, vol. 34, no. 10, pp. 1253-1255, Oct. 2013.
[13]P. Huang, S. Chen, Y. Zhao, B. Chen, B. Gao, L. Liu, Y. Chen, Z. Zhang, W. Bu, H. Wu, X. Liu, and J. Kang, "Self-Selection RRAM Cell With Sub-μA Switching Current and Robust Reliability Fabricated by High- K /Metal Gate CMOS Compatible Technology," in IEEE Transactions on Electron Devices, vol. 63, no. 11, p.4295- 4301, Nov. 2016.
[14]C. Sung, J. Song, S. Lee and H. Hwang, "Improved endurance of RRAM by optimizing reset bias scheme in 1T1R configuration to suppress reset breakdown," 2016 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, 2016, pp. 84-85.
[15]X. Xu, Q. Luo, T. Gong, H. Lv, S. Long, Q. Liu, S. S. Chung, J. Li, and M. Liu,, "Fully CMOS compatible 3D vertical RRAM with self-aligned self-selective cell enabling sub-5nm scaling," 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, 2016, pp. 1-2.
[16]W. C. Shen, C. Y. Mei, Y. D. Chih, S. S. Sheu, M. J. Tsai, Y. C. King, and C. J. Lin, "High-K metal gate contact RRAM (CRRAM) in pure 28nm CMOS logic process," 2012 International Electron Devices Meeting, San Francisco, CA, 2012, pp. 31.6.1-31.6.4.
[17]B. Magyari-Köpe, L. Zhao, K. Kamiya, Moon Young Yang, K. Shiraishi and Y. Nishi, "Review on simulation of filamentary switching in binary metal oxide based RRAM devices," 2014 IEEE International Nanoelectronics Conference (INEC), Sapporo, 2014, pp. 1-3.
[18]P. Y. Lin, T. H. Yang, Y. T. Sung, C. J. Lin, Y. C. King and T. S. Chang, "Self-align nitride based logic NVM in 28nm high-k metal gate CMOS technology," 2013 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, 2013, pp. 1-2.
[19]E. Vianello, F. Driussi, A. Arreghini, P. Palestri, D. Esseni, L. Selmi, N. Akil, M. J. van Duuren, and D. S. Golubovic, "Experimental and Simulation Analysis of Program/Retention Transients in Silicon Nitride-Based NVM Cells," in IEEE Transactions on Electron Devices, vol. 56, no. 9, pp. 1980-1990, Sept. 2009.
[20]Y. H. Tsai, K. C. Lin, C. H. Kuo, Y. D. Chih, C. J. Lin and Y. C. King, "A Nitride-Based P-Channel Logic-Compatible One-Time- Programmable Cell With a New Contact Select Gate," in IEEE Electron Device Letters, vol. 30, no. 10, pp. 1090-1092, Oct. 2009
[21] C. E. Huang, Y. J. Chen, H. C. Lai, Y. C. King and C. J. Lin, "A Study of Self-Aligned Nitride Erasable OTP Cell by 45-nm CMOS Fully Compatible Process," in IEEE Transactions on Electron Devices, vol. 56, no. 6, pp. 1228-1234, June 2009.
[22]H. C. Lai, K. Y. Cheng, Y. C. King and C. J. Lin, "A 0.26-μm2 U-Shaped Nitride-Based Programming Cell on Pure 90-nm CMOS Technology," in IEEE Electron Device Letters, vol. 28, no. 9, pp. 837-839, Sept. 2007.
[23] P. Y. Lin, Y. L. Chiu, Y. T. Sung, J. Chen, T. S. Chang, Y. C. King, and C. J. Lin., "On-Chip Recovery Operation for Self-Aligned Nitride Logic Non-Volatile Memory Cells in High-K Metal Gate CMOS Technology," in IEEE Journal of the Electron Devices Society, vol. 3, no. 6, pp. 463-467, Nov. 2015.
[24] C. E. Huang, H. M. Chen, H. C. Lai, Y. J. Chen, Y. C. King and C. J. Lin, "A New Self-Aligned Nitride MTP Cell with 45nm CMOS Fully Compatible Process," 2007 IEEE International Electron Devices Meeting, Washington, DC, 2007, pp. 91-94.
[25] Y. J. Chen, C. E. Huang, H. M. Chen, H. C. Lai, J. R. Shih, K. Wu, Y. C. King, and C. J. Lin, "A Novel 2-Bit/Cell p-Channel Logic Programmable Cell With Pure 90-nm CMOS Technology," in IEEE Electron Device Letters, vol. 29, no. 8, pp. 938-940, Aug. 2008.
[26]R. S. C. Wang, R. S. J. Shen and C. C. H. Hsu, "Neobit® –high reliable lofic non-volatile memory (NVM)," Proceedings of the 11th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IPFA 2004 (IEEE Cat. No.04TH8743), 2004, pp. 111-114.
[27]H. M. Lee, S. T. Woo, H. M. Chen, R. Shen, C. D. Wang, L.C. Hsia and C. C.H. Hsu, "NeoFlash - True Logic Single Poly Flash Memory Technology," 2006 21st IEEE Non-Volatile Semiconductor Memory Workshop, Monterey, CA, 2006, pp. 15-16.
[28]D. Hisamoto, W. C. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, K. Asano, T. J. King, J. Bokor, and C. Hu, "A folded-channel MOSFET for deep-sub-tenth micron era," International Electron Devices Meeting 1998. Technical Digest, San Francisco, CA, USA, 1998, pp. 1032-1034.
[29]H. W. Pan, K. P. Huang, S. Y. Chen, P. C. Peng, Z. S. Yang, C. H. Kuo, Y. D. Chih, Y. C. King, and C. J. Lin, "1Kbit FinFET Dielectric (FIND) RRAM in pure 16nm FinFET CMOS logic process," 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 2015, pp. 10.5.1-10.5.4.
[30]Y. Z. Chen, J. E. Yuan, C. J. Lin and Y. C. King, "Multilevel Anti-Fuse Cells by Progressive Rupturing of the High-K Gate Dielectric in FinFET Technologies," in IEEE Electron Device Letters, vol. 37, no. 9, pp. 1120-1122, Sept. 2016.
[31]C. Hu, "Lucky-electron model of channel hot electron emission," 1979 International Electron Devices Meeting(IEDM), 1979, pp. 22-25.
[32]T. Ogura, M. Mihara, Y. Kawajiri, K. Kobayashi, S. Shimizu, S. Shukuri, N. Ajika, and M. Nakashima, "A Highly Reliable Logic NVM "eCFlash (Embedded CMOS Flash)" Utilizing Differential Sense-Latch Cell with Charge-Trapping Storage," 2008 Joint Non- Volatile Semiconductor Memory Workshop and International Conference on Memory Technology and Design, Opio, 2008, pp. 79- 82.
[33]B. Wang, M. Niset, Y. Ma, H. Nguyen and R. Paulsen, "Scaling tunneling oxide to 50Å in floating-gate logic NVM at 65nm and beyond," 2007 IEEE International Integrated Reliability Workshop Final Report, S. Lake Tahoe, CA, 2007, pp. 48-51.
[34]Y. Ma, R. Deng, H. Nguyen, B. Wang, A. Pesavento, M. Niset, and R. Paulsen, "Floating-Gate Nonvolatile Memory With Ultrathin 5-nm Tunnel Oxide," in IEEE Transactions on Electron Devices, vol. 55, no. 12, pp. 3476-3481, Dec. 2008.
[35] B. Wang, H. Nguyen, A. Horch, Y. Ma and R. Paulsen, "Charge retention of silicided and unsilicided floating gates in embedded logic nonvolatile memory," 2005 IEEE International Integrated Reliability Workshop, 2005, pp. 4.
[36] T. L. Lee, Y. H. Tsai, W. J. Lin, H. L. Yang, C. W. Lien, C. J. Lin, and Y. C. King, "A New Differential P-Channel Logic-Compatible Multiple-Time Programmable (MTP) Memory Cell With Self- Recovery Operation," in IEEE Electron Device Letters, vol. 32, no. 5, pp. 587-589, May 2011.
[37]N. Ajika, M. Ohi, H. Arima, T. Matsukawa and N. Tsubouchi, "A 5 volt only 16M bit flash EEPROM cell with a simple stacked gate structure," International Technical Digest on Electron Devices, San Francisco, CA, USA, 1990, pp. 115-118.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *