帳號:guest(3.15.29.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃柏蓉
作者(外文):Huang, Bo-Rong.
論文名稱(中文):奈米級鰭式場效電晶體的寄生電阻及寄生電容研究及其延伸應用靜態隨機存取儲存器的寄生效應
論文名稱(外文):An Investigation of the Parasitic RC Effects on Nano-scaled FinFETs and SRAM Cells
指導教授(中文):金雅琴
指導教授(外文):King, Ya-Chin
口試委員(中文):林崇榮
朱文定
口試委員(外文):Lin, Chrong Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063512
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:72
中文關鍵詞:寄生電阻寄生電容靜態隨機存取儲存器
外文關鍵詞:parasitic resistanceparasitic capacitanceSRAM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:895
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在電晶體隨著摩爾定律規則微縮的時代,平面架構的微縮已達到物理極限,三維度立體結構的鰭式場效電晶體在能提升閘極控制能力及降低漏電流的情況下發展出超越摩爾定律的可能性,此架構因其高微縮性已被先進製程採用作為主流架構。然而元件結構的大幅度改變也伴隨著寄生效應的增生,其條狀接觸槽及突起式源極與汲極磊晶區皆造成寄生電容的比例大幅提升,因此寄生效應對於單一元件表現的影響以及整體電路的實際效能影響,是在現今大量倚靠此元件的半導體IC產業迫切需要深入了解的重要課題。
本篇論文中先分析單一鰭式場效電晶體元件內部寄生電阻及寄生電容組成成分及所佔比例,建立出符合分析結果的三維電晶體模組。透過此模組延伸討論不同鰭數架構下的寄生效應以及針對實際製程中額外添加的虛設閘極架構探討其實際寄生電容是否會影響整體元件特性。同時除了單一元件的寄生效應外,論文也深入探討寄生效應在電路中對實際效能的影響,以靜態隨機存取記憶作為實例建構出模擬電路架構,並利用電路的基本特性曲線比較RC寄生效應對於實際電流效能所造成的差異。
針對寄生電容的萃取,本論文提出一種新穎的電容量測方法,可直接量測到單一元件的寄生電容值;有別於傳統的電容量測法,不會因為受限於量測機台的精準度而須將待測元件串接成大面積,以達到增加寄生電容至可量測級別。然而此量測方法的部分架構因受限於僅16奈米先進製程技術可使用,因此提出改良該架構提出了可適用於各製程技術的電容量測方法。
In the generation which transistors are scaled down by following the Moore's law, planar structures scalability had reached physical limits. Three-dimensional FinFET structure with its increment of gate control ability and decrement of leakage current has developed for further scaling of gate length beyond 20nm. This structure has been adopted as mainstream structure due to its highly scalability, and yet along with its massive change in the structure lead to risen parasitic effects. The slot contacts and the raised source/drain regions with expanded volume can lead to increased parasitic capacitance effect. Therefore, the parasitic effects on single device’s and overall circuit’s performance are critical issues to overall circuit performance.
In this work, first of all, components contributed to the parasitic resistance and capacitance of a single FinFET device and its ratios are extracted. A three-dimensional transistor model which fits the measurement results is built. Then through the extensive of simulation result, the parasitic effects of multi-fin structure are discussed. Also, the dummy patterns added in the manufacture process are simulated, and its effects on overall device’s performance are investigated. Lastly, the effects of parasitic RC on the overall circuit’s performance are studied using 6T-SRAM as an example. A simulated circuit and compared the parasitic effects through testing its characteristic curves.

A novel approach for the parasitic capacitance extraction of nano-scaled FinFETs is proposed in this work. Unlike traditional parasitic capacitance extractions which requires test patterns of larger area. Direct extraction of capacitance on a single device is enabled by this method. A modified test pattern is proposed for planer, lastly CMOS technology platforms.
摘要 i
Abstract ii
致謝 iv
內文目錄 vi
附圖目錄 ix
附表目錄 xi
第一章 序論 1
1.1 鰭式場效電晶體之介紹 1
1.2 研究動機 2
1.3 論文大綱 3
第二章 鰭式場效電晶體寄生效應 4
2.1 單鰭式場效電晶體細部寄生電阻萃取分析 4
(a)通道調變寄生電阻萃取法 4
(b)細部電阻萃取分析 5
2.2 單鰭式場效電晶體細部寄生電容萃取 6
2.2.1條狀接觸槽耦合之浮動閘極架構寄生電容萃取法 6
2.2.2細部電容萃取分析 7
2.3 單鰭式場效電晶體模組建構介紹 8
2.3.1模擬環境及電晶體架構介紹 8
2.3.2 基本電性分析 9
2.4 多鰭式場效電晶體的寄生電容及電阻效應 9
2.4.1 架構介紹 10
2.4.2 模擬結果分析 10
2.5 虛設閘極架構的寄生電容效應 11
2.5.1 架構介紹 11
2.5.2 模擬結果分析 12
2.6 小結 13
第三章 鰭式場效電晶體寄生效應於電路效能的影響 28
3.1 寄生效應對電路的影響分析 28
3.2 模擬環境介紹 29
3.3 靜態隨機存取記憶體介紹 29
3.3.1 虛設閘極架構的靜態隨機存取記憶體 30
3.4寄生效應下之基本特性 31
3.4.1 SNM分析 31
3.4.2 動態讀取穩定性分析 32
3.5小結 32
第四章 萃取細部寄生電容方法之改良 41
4.1 歧異耦合之浮動閘極架構細部電容萃取原理 41
4.1.1 條狀接觸槽耦合方法 42
4.1.2 N井耦合方法 43
4.2量測環境 44
4.3 電荷式電容量測方法 45
4.3.1原理簡介 45
4.3.2 量測結果分析 46
4.4 N井耦合方法之細部電容萃取 47
4.4.1 原理介紹 47
4.4.2 細部電容萃取結果分析 48
4.5小結 49
第五章 總結 63
5.1 各類電容量測法之比較 63
5.2 結語與未來展望 63
參考文獻 65
[1] S. K. Saha, "Emerging business trends in the semiconductor industry," 2013 Proceedings of PICMET '13: Technology Management in the IT-Driven Services (PICMET), San Jose, CA, 2013, pp. 2744-2748.
[2] W. Y. Jiang, X. Quan and S. Zhou, "Historical, entrepreneurial and supply chain management perspectives on the semiconductor industry," PICMET '08 - 2008 Portland International Conference on Management of Engineering & Technology, Cape Town, 2008, pp. 2552-2559.
[3] M. Veshala, R. Jatooth and K. R. Reddy, “Reduction of Short-Channel Effects in FinFET,” International Journal of Engineering and Innovative Technology (IJEIT), vol. 2, no 9, pp.118-124, March, 2013.
[4] M. Fulde1, J. P. Engelstadter, G. Knoblinger and D. Schmitt-Landsiede, “Analog circuits using FinFETs: benefits in speed-accuracy-power trade-off and simulation of parasitic effects,” Adv. Radio Sci., no. 5, pp. 285-290, 2007.
[5] T. Yamashita et al., "Sub-25nm FinFET with advanced fin formation and short channel effect engineering," in VLSI Technology (VLSIT), 2011, pp. 14-15.
[6] J. Kedzierski, P. Xuan, E. H. Anderson, J. Bokor, Tsu-Jae King and Chenming Hu, "Complementary silicide source/drain thin-body MOSFETs for the 20 nm gate length regime," Electron Devices Meeting, 2000. IEDM '00. Technical Digest. International, San Francisco, CA, 2000, pp. 57-60.
[7] M. A. Chalkiadaki et al., "Evaluation of the BSIM6 compact MOSFET model's scalability in 40nm CMOS technology," 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC), Bordeaux, 2012, pp. 50-53.
[8] S. S. Li, "A key more-than-moore technology: CMOS-MEMS resonant transducers," 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), Sendai, 2016, pp. 456-459.
[9] N. Collaert et al., "Beyond-Si materials and devices for more Moore and more than Moore applications," 2016 International Conference on IC Design and Technology (ICICDT), Ho Chi Minh City, 2016, pp. 1-5.
[10] H. H. Takasu, ""More than Moore" expands the semiconductor world," 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, 2016, pp. 1-2.
[11] Y. H. Lu, P. Y. Kuo, Y. H. Wu, Y. H. Chen and T. S. Chao, "Novel GAA raised source / drain sub-10-nm poly-Si NW channel TFTs with self-aligned corked gate structure for 3-D IC applications," 2011 Symposium on VLSI Technology (VLSIT), Honolulu, HI, 2011, pp. 142-143.
[12] C. Le Royer et al., "High Performance FDSOI MOSFETs and TFETs Using SiGe Channels and Raised Source and Drain," 2012 International Silicon-Germanium Technology and Device Meeting (ISTDM), Berkeley, CA, 2012, pp. 1-2.
[13] G. Raveendra, I. Flavia Princess Nesama, P. C. Rijo and V. Lakshmi Prabha, "Raised source drain metal diffusion in Finfet," 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), Nagercoil, 2013, pp. 741-745.
[14] J. Lacord et al., "Parasitic Capacitance Analytical Model for Sub-7-nm Multigate Devices," IEEE Transactions on Electron Devices, vol. 63, no. 2, pp. 781-786, December, 2015.
[15] P. Jay and A. D. Darji, "Analysis of the source/drain parasitic resistance and capacitance depending on geometry of FinFET," 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Glasgow, 2016, pp. 298-301.
[16] Aixi Zhang et al., " A field-based parasitic capacitance model with 3-D terminal and terminal fringe components," 2015 6th Asia Symposium on Quality Electronic Design (ASQED), Kula Lumpur, 2015, pp. 166-170.
[17] S. S. Rodriguez et al., "Parasitic Gate Capacitance Model for Triple-Gate FinFETs," IEEE Transactions on Electron Devices, vol. 60, no. 11, pp. 3710-3717, October, 2013.
[18] J. Lacord, G. Ghibaudo and F. Boeuf, "Comprehensive and Accurate Parasitic Capacitance Models for Two- and Three-Dimensional CMOS Device Structures," IEEE Transactions on Electron Devices, vol. 59, no. 5, pp. 1332-1344, March, 2012.
[19] K. L. Yeh and J. C. Guo, "A New Method for Layout-Dependent Parasitic Capacitance Analysis and Effective Mobility Extraction in Nanoscale Multifinger MOSFETs," IEEE Transactions on Electron Devices, vol. 58, no. 9, pp. 2838-2846, July, 2011.
[20] D. Kim, Y. Kang, M. Ryu and Y. Kim, "Simple and accurate capacitance modeling of 32nm multi-fin FinFET, " 2013 International SoC Design Conference (ISOCC), Busan, 2013, pp. 392-393.
[21] H. W. Cheng and Y. Li, "16-nm multigate and multifin MOSFET device and SRAM circuits," 2010 International Symposium on Next Generation Electronics, Kaohsiung, 2010, pp. 32-35.
[22] E. S. Avila et al., "Parasitic Gate Resistance Impact on Triple-Gate FinFET CMOS Inverter," IEEE Transactions on Electron Devices, vol. 63, no. 7, pp. 2635-2642, May, 2016.
[23] Y. W. Chang et al., "A novel CBCM method free from charge injection induced errors: investigation into the impact of floating dummy-fills on interconnect capacitance," Proceedings of the 2005 International Conference on Microelectronic Test Structures, 2005. ICMTS 2005, Leuven, 2005, pp. 235-238.
[24] N. R. Mohapatra, M. P. Desai, S. G. Narendra and V. R. Rao, "Modeling of parasitic capacitances in deep submicrometer conventional and high-K dielectric MOS transistors," IEEE Transactions on Electron Devices, vol. 50, no. 4, pp. 959-966, June, 2003.
[25] X. Song, A. Q. Huang, M. Lee and G. Wang, "A dynamic measurement method for parasitic capacitances of high voltage SiC MOSFETs," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, 2015, pp. 935-941.
[26] T. Kuremyr, C. Delepaut, R. Dittrich and J. Becherer, "MOSFET parasitic capacitance change in non-zero current and voltage bias conditions," 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), Geneva, 2015, pp. 1-10.
[27] S. D. Kim, H. Wada and J.C.S. Woo, "TCAD-based statistical analysis and modeling of gate line-edge roughness effect on nanoscale MOS transistor performance and scaling," IEEE Transactions on Semiconductor Manufacturing, vol. 17, no.2, pp. 192-200, May, 2004.
[28] X. Sun et al., "Experimental analysis of above-IC inductor performance with different patterned ground shield configurations and dummy metals," 2006 European Microwave Conference, Manchester, 2006, pp. 40-43.
[29] A. Tsuchiya and H. Onodera, "Patterned Floating Dummy Fill for On-Chip Spiral Inductor Considering the Effect of Dummy Fill," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3217-3222, November, 2008.
[30] B. C. Ching, H. C. Yew and D. K. C. Tien, "A case study of how pattern density affect metal etch," 2008 IEEE International Conference on Semiconductor Electronics, Johor Bahru, 2008, pp. 629-630.
[31] A. P. Karmarkar, X. Xu, V. Moroz, G. Rollins and X. Lin, "Analysis of performance and reliability trade-off in dummy pattern design for 32-nm technology," 2009 10th International Symposium on Quality Electronic Design, San Jose, CA, 2009, pp. 185-189.
[32] D. Scagnelli et al., "Pattern Density Methodology Using IBM Foundry Technologies," 2007 Proceedings 57th Electronic Components and Technology Conference, Reno, NV, 2007, pp. 1300-1307.
[33] D. Bhattacharya and N. K. Jha, "TCAD-Assisted Capacitance Extraction of FinFET SRAM and Logic Arrays," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no.1, pp. 329-333, February, 2015.
[34] M. N. Kishor, and S. S. Narkhede, "Design of a ternary FinFET SRAM cell," 2016 Symposium on Colossal Data Analysis and Networking (CDAN), Indore, 2016, pp. 1-5.
[35] J. J. Kim, A. Bansal, R. Rao, S. H. Lo and C. T. Chuang, "Relaxing Conflict Between Read Stability and Write ability in 6T SRAM Cell Using Asymmetric Transistors," IEEE Electron Device Letters, vol. 30, no. 8, pp. 852-854, July, 2009.
[36] D. Bhattacharya and N. K. Jha, "Ultra-High Density Monolithic 3-D FinFET SRAM With Enhanced Read Stability," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 8, pp. 1176-1187, July, 2016.
[37] H. Villacorta, R. Gomez, S. Bota, J. Segura and V. Champac, " Impact of increasing the fin height on soft error rate and static noise margin in a FinFET-based SRAM cell," 2015 16th Latin-American Test Symposium (LATS), Puerto Vallarta, 2015, pp. 1-6.
[38] M. C. Chen et al., "A 10 nm Si-based bulk FinFETs 6T SRAM with multiple fin heights technology for 25% better static noise margin," 2013 Symposium on VLSI Circuits, Kyoto, 2013, pp. T218- T219.
[39] H. Jeong, Y. Yang, J. Lee, J. Kim and S. O. Jung, "Static read stability and write ability metrics in FinFET based SRAM considering read and write-assist circuits," 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012), Seville, 2012, pp. 833-836.
[40] H. Park and C. K. K. Yang, "In Situ SRAM Static Stability Estimation in 65-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 48, no. 10, pp. 2541-2549, August, 2013.
[41] D. Sylvester, J. C. Chen and C. Hu, "Investigation of interconnect capacitance characterization using Charge-Based Capacitance Measurements (CBCMs) technique and three-dimensional simulations," IEEE Journal of Solid-State Circuits, vol. 33, no. 3, pp.449-453, March, 1998.
[42] D. Sylvester, J. C. Chen and C. Hu, "Investigation of interconnect capacitance characterization using Charge-Based Capacitance Measurement (CBCM) technique and 3-D simulation," Proceedings of CICC 97 - Custom Integrated Circuits Conference, Santa Clara, CA, 1997, pp. 491-494.
[43] Y. W. Chang et al., "A novel simple CBCM method free from charge injection-induced errors," IEEE Electron Device Letters, vol. 25, no. 5, pp. 262-264, May, 2004.
[44] Y. W. Chang et al., "Interconnect capacitance characterization using charge-injection-induced error-free (CIEF) charge-based capacitance measurement (CBCM)," IEEE Transactions on Semiconductor Manufacturing, vol.19, no. 1, pp. 50-56, February, 2006.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *