帳號:guest(3.145.77.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃柏鈞
作者(外文):Huang, Bor-Jiun.
論文名稱(中文):平面型640×480及960×540磷化銦系列短波紅外光檢測器陣列之研製
論文名稱(外文):Fabrication and Characterization of Planar-Type p-i-n 640×480 and 960×540 InP-based Short-Wave Infrared Photodiode Array
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):謝明勳
徐子傑
張永富
口試委員(外文):Hsieh, Ming-Hsiun
Hsu, Tzu-Chieh
Jang, Yung-Fu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063511
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:79
中文關鍵詞:平面型結構短波紅外光陣列型光感測器快速熱擴散技術磷化銦
外文關鍵詞:planar-typeSWIRphotodiode arrayrapid thermal diffusionInP
相關次數:
  • 推薦推薦:0
  • 點閱點閱:510
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們設計並製作出平面型640×480及960×540磷化銦系列短波紅外光檢測器陣列,每顆光檢測器的直徑大小分別為7.8微米及8.2微米,光檢測器中心到中心的距離皆為12.8微米。我們採用平面型結構作為p-i-n光檢測器是由於平面型結構能使光檢測器元件擁有低的暗電流以及長期穩定性。其中,以截止波長為1.7 微米的In0.53Ga0.47As作為光吸收層。在製程中,我們使用氮化矽作為擴散阻擋層以及鈍化層,分別用來定義擴散區以及降低元件的漏電流。p型區域是透過快速熱擴散的技術,將未摻雜的磷化銦覆蓋層成為p型磷化銦覆蓋層,而形成p-i-n結構的光檢測器。另外,鋅原子是目前用於砷化銦鎵光檢測器中最常見的p型摻雜源。首先,我們先探討在不同擴散條件下所對應擴散深度的變化。再者,探討在不同擴散條件下,對光檢測器元件的電特性之影響。最後,將在最佳擴散條件下所完成的光檢測器元件進行分晶並封裝打線後,便能量測出光檢測器元件的響應度以及外部量子效率。
In this thesis, we design and fabricate an planar-type p-i-n 640×480 and 960×540 Indium Phosphide (InP) based Short-Wave Infrared (SWIR) Photodiode (PD) array. The diameter of each PD device is 7.8 μm and 8.2 μm, respectively. The pitch of PD array is 12.8 μm. We use a planar-type structure as a p-i-n PD because of the low dark current and long-term stability of the PD device. Among them, In0.53Ga0.47As with a cutoff-wavelength of 1.7-μm is used as the absorption layer.In the process, we use silicon nitride (SiNx) as a diffusion mask and passivation layer, used to define the diffusion region and reduce the leakage current of PD device, repectively. We introduce the rapid thermal process with the zinc-phosphorous-dopant-coating (ZPDC) as the spin-on dopant (SOD) source to form the p-type region. The undoped InP cap layer becomes the p-type InP cap layer, thereby forming a p-i-n structure of the PD. Besides, zinc (Zn) atoms are currently the most common p-type dopants for InGaAs PD.First, we discuss the change of the diffusion depth corresponding to the different diffusion conditions. Then, the different diffusion conditions is also shown to have a significant influence on the PD device electrical characteristics. Finally, the responsivity and the external quantum efficiency can only be measured after dicing and bonding the PD chip on TO-can.
Chapter 1. Introduction 1
Chapter 2. The Basic Theory 7
2-1 The Basic theory of p-n junction Photodiodes 7
2-2 The Basic theory of InGaAs Double-Heterojunction p-i-n Photodiodes 8
2-2-1 InGaAs Photodiodes material 9
2-2-2 Junction Capacitance 10
2-2-3 Dark Current Mechanism 12
2-2-4 Responsivity and Quantum Efficiency 13
2-3 Transmission-Line Model 14
2-4 Characterization instruments 15
2-4-1 I-V Characteristic Measurement System 15
2-4-2 C-V Characteristic Measurement System 16
2-4-3 Responsivity Spectrum Measurement System 16
Chapter 3. Experimental Procedure 21
3-1 Epitaxial Structure Design 21
3-2 Concepts for Design of Mask 22
3-3 Dielectric Deposition and Etching 23
3-4 Thermal Drive-in Process 24
3-5 Fabrication Process of Transmission-Line Model 25
3-5-1 Fabrication Process of p-metal TLM 25
3-5-2 Fabrication Process of n-metal TLM 28
3-6 Fabrication Process of Planar-Type p-i-n PD array 29
3-6-1 Fabrication Process of 640×480 pixels PD array 30
3-6-2 Fabrication Process of 960×540 pixels PD array 34
Chapter 4. Results and Disscussion 51
4-1 The Zinc Depth Profiles of InP/InGaAs Structure at Different Diffusion conditions 51
4-2 Specific Contact Resistance 52
4-2-1 Characteristics of p-InP and p-metal specific contact resistance 52
4-2-2 Characteristics of n+-InP substrate and n-metal specific contact resistance 52
4-3 Characteristics of Planar-Type 1.7-μm cutoff-wavelength InGaAs p-i-n Photodetector Array 53
4-3-1 The dark current of the planar-type 1.7-μm cutoff-wavelength p-i-n PD array at room temperature 53
4-3-2 The series resistance and turn on voltage of the planar-type 1.7-μm cutoff-wavelength p-i-n PD array at room temperature 54
4-3-3 The dark current of the planar-type 1.7-μm cutoff-wavelength p-i-n PD array at various temperature 56
4-3-4 Responsivity and Quantum Efficiency 57
Chapter 5. Conclusions 76
Reference 78
[1]Y. Yang, Y. H. Zhang, W. Z. Shen and H. C. Liu, “Semiconductor infrared up-conversion devices,” Progress in Quantum Electronics, 35, 77-108, 2011.
[2]A. Rogalski, “Infrared Detectors, Second Edition,” Antonio Rogalski, Chap. 1, 2010.
[3]Y. Yang, Y. H. Zhang, W. Z. Shen and H. C. Liu, “Semiconductor infrared up-conversion devices,” Progress in Quantum Electronics, 35, 77-108, 2011.
[4]https://en.wikipedia.org/wiki/Indium_gallium_arsenide
[5]https://en.wikipedia.org/wiki/Indium_phosphide
[6]http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_5/backbone/r5_1_4.html
[7]S. Feng, J. Hu, Y. Lu, B. V. Yakshinskiy, J. D. Wynn, and C. Ghoshet, “Comparative studies of p-type InP layers formed by Zn3As2 and Zn3P2 diffusion,” J. Electron. Mater., vol. 32, pp. 932–934, 2003.
[8]O. J. Pitts, W. Benyon, D. Goodchild, and A. J. SpringThorpe, “Multiwafer zinc diffusion in an OMVPE reactor,” J. Cryst. Growth, vol. 352, no. 1, pp. 249–252, 2012.
[9]C. P. Skrimshire, J. R. Farr, D. F. Sloan, M.J. Robertson, P.A. Putland, J.C.D. Stokoe, and R.R. Sutherland, “Reliability of mesa and planar InGaAs PIN photodiodes,” IEEE Proc. J, vol. 137, no. 1, pp. 74–78, 1990.
[10]M. R. Ravi, A. DasGupta, and N. DasGupta, “Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment,” J. Cryst. Growth, vol. 268, pp. 359–363, 2004.
[11]Ben G. Streetman and Sanjay Kumar Banerjee, “Solid State Electronic Devices,” 6th ed, Prentice Hall, New York, Chap. 8, 2007.
[12]A. Brillant, “Digital and analog fiber optic communications for CATV and FTTx Applications,” SPIE Press, Washington, Chap. 8, 2008.
[13]V. Swaminathan and A. T. Macrander, “Materials Aspects of GaAs and InP Based
79
Structures,” Prentice Hall, Chap. 1, 1991.
[14]R.W.M. Hoogeveen, R.J. van der A, A.P.H. Goede, “Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere,” Infrared Phys. Tech., vol. 42, no. 1, pp. 1–16, 2001.
[15]Donald A. Neaman, “Semiconductor Physics And Device,” 3rd ed, McGraw-Hill, New York, Chap. 7-8, 2003.
[16]S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” John Wiley & Sons, New York, Chap. 13, 2007.
[17]G. K. Reeves and H. B. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron. Lett., vol. 3, no. 5, pp. 111–113, 1982.
[18]https://en.wikipedia.org/wiki/Display_resolution#/media/File:Vector_Video_Standards8.svg
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *