帳號:guest(18.223.203.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江明洲
作者(外文):Chiang, Ming-Chou
論文名稱(中文):磷化銦系列近紅外寬波段發光二極體及微型化發光二極體陣列之研製與改良
論文名稱(外文):Fabrication and Improvement of InP-Based NIR broadband LED and micro LED
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng Chyi
口試委員(中文):謝明勳
徐子傑
口試委員(外文):Shie, Ming-Shiun
Shiu, Tz-Jie
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063510
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:81
中文關鍵詞:磷化銦發光二極體寬波段近紅外光微型發光二極體
外文關鍵詞:InPLEDbroadbandNIRmicro LED array
相關次數:
  • 推薦推薦:0
  • 點閱點閱:354
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
於本論文中,我們選用磷化銦作為基板,設計及研製出近紅外寬波段發光二極體及640×480微型化發光二極體陣列。在磊晶結構設計方面,我們利用InP/GaxIn1-xAsyP1-y雙異質接面使得LED得以一次輸出1~1.7 µm的光譜,其中,包含砷化鋁銦(InAlAs)作為電子阻擋層,提升電子電洞對復合機率。除此之外,GaxIn1-xAsyP1-y及InAlAs與InP基板皆為晶格匹配,可降低因界面缺陷而減少發光載子的復合數目。在近紅外寬波段發光二極體製程中,我們利用旋塗參雜源技術(SOD)及快速熱擴散形成p-型區,此一作法可以大幅降低因檯面型結構(mesa-type structure)所產生漏電流過大的問題。除此之外,我們將探討不同擴散溫度、透明導電膜以及基板厚度等條件下,對元件的特性之影響。而在640*480微型化發光二極體陣列製程中,為了實現主動式控制發光二極體陣列的目標,我們將使用覆晶封裝技術(Flip-chip bonding)和控制電路接合。因此,在製程結構上,必須得選用檯面型結構來達到此目標。此微型化發光二極體的像素中心到中心距離為12.8微米,每顆像素的大小為7.8微米,陣列的長為9.728毫米,寬為7.68毫米,對角線長度為0.49英吋 (12.394毫米)。最後,我們成功製作出一個低漏電流( 35 pA @-5 V)、低啟動電壓(1.37 V @20mA)及低串聯電阻( 7.5 Ω)之近紅外寬波段發光二極體,在100mA的電流注入下,總發光功率為930𝜇W。外部量子效率及光電轉換效率分別為0.924%及0.454%。在250mA的電流注入下,其最大的發光功率可達為1.814mW。至於微型化發光二極體陣列之單一像素特性,在負5伏特偏壓下,漏電流為2.05 nA; 在負10伏特偏壓下,漏電流為9.5 nA。在正偏壓下,啟動電壓為1.05 V。在1 mA的電流注入下,總發光功率為35.367 nW,而外部量子效率及光電轉換效率分別為0.00384%及0.00147%。
In this search, we choose InP as substrate to design and fabricate a NIR broadband single light-emitting diode (LED) and a 640×480 NIR broadband micro LED array. In the epitaxial structure design, we adopt multiple double heterostructures of InP/GaxIn1-xAsyP1-y to achieve a goal of emitting a broadband spectrum of 1000-1700nm simultaneously. Moreover, we use In0.52Al0.48As as electron blocking layer to increase the probability of electron hole pair recombination. In addition, both of GaxIn1-xAsyP1-y and In0.52Al0.48As are lattice-matched to InP substrate so as to reduce interface defects. In the process of NIR broadband single LED, we form p-type region by spin-on-dopant (SOD) and rapid thermal diffusion. By this way, we can solve high leakage current caused by mesa-type structure. Furthermore, we will discuss the influence of different diffusion temperature, transparent conductive oxide (TCO), and substrate thickness on the properties of LED devices. In the process of 640*480 micro LED array, we will apply flip-chip bonding technique and SDK controller to control actively micro LED array. Therefore, mesa-type structure can help us to achieve this goal. In this search, the pitch of 640×480 micro-LED array is 12.8μm, the diameter of each pixel is 7.8μm, the length of 640×480 micro-LED array is 9.728 mm, width is 7.68 mm, and diagonal length is 0.49 inch (12.394 mm). Finally, we successfully fabricate the NIR broadband single LEDs devices with low leakage current (35 pA @-5 V), low turn-on voltage (1.37 V @20mA), and low series resistance Rs of 7.5 Ω. In addition, the light output power is 930 µW at 100 mA injected current. The quantum efficiency and power efficiency is 0.924% and 0.454% respectively. At 250 mA injected current, the light output power can achieve 1.814 mW. As for the single pixel characteristics of micro-LED array, the reverse leakage current at -5 V is 2.05 nA, the reverse leakage current at -10 V is 9.5 nA. At forward bias, the turn-on voltage is 1.05 V. In addition, the light output power is 35.367 nW at 1 mA injected current. The quantum efficiency and power efficiency is 0.00384% and 0.00147% respectively.
Chapter 1 Introduction 1
Chapter 2 Fundamental Principle and Theoretical Analysis 6
2-1 Introduction of InP/GaxIn1-xAsyP1-y Double heterostructure 6
2-1-1 Physics fundamentals of double heterostructure 6
2-1-2 Influence of doping concentration in the active layer 9
2-1-3 The problem of p-n junction displacement 10
2-1-4 Influence of doping concentration in the confinement regions 10
2-1-5 Influence of non-radiative recombination 11
2-1-6 Lattice matching 13
2-2 Characteristics Measurement System 13
2-2-1 I-V Characteristics Measurement System 14
2-2-2 Electroluminescence (EL) Spectrum Measurement System 14
2-2-3 Integrating Sphere Measurement System 15
Chapter 3 Experimental process 21
3-1 Epitaxial Structure Design 21
3-2 Photo-Mask Design 23
3-3 Thermal Driven-in step 26
3-4 Fabrication of NIR broadband LEDs 27
3-4-1 Fabrication Process of NIR broadband LEDs 28
3-4-2 Fabrication Process of micro NIR broadband LEDs 33
Chapter 4 Results and Discussion 43
4-1 Photoluminescence (PL) of InP-based broadband NIR epi-wafer 43
4-2 Characteristics of InP-based broadband NIR LED 45
4-2-1 NIR LED characteristics dependent on diffusion temperature 46
4-2-2 NIR LED characteristics dependent on transparent conductive oxide 53
4-2-3 NIR LED characteristics dependent on substrate thickness 60
4-2-4 Uniformity analysis of single broadband NIR LED 65
4-3 Characteristics of InP-based broadband NIR micro LED 73
Chapter 5 Conclusion 79
Reference 80
[1]Schubert, E. Fred, Thomas Gessmann, and Jong Kyu Kim. Light emitting diodes. John Wiley & Sons, Inc., 2005.
[2]Zheludev, Nikolay. "The life and times of the LED—a 100-year history." Nature Photonics 1.4 (2007): 189-192.
[3]Schreiner, Keri. "Night Vision: infrared takes to the road." IEEE Computer Graphics and Applications 19.5 (1999): 6-10.
[4]Boles, Wageeh W. "A security system based on human iris identification using wavelet transform." Engineering Applications of Artificial Intelligence 11.1 (1998): 77-85.
[5]Bönöczk, Péter, Gyula Panczel, and Zoltán Nagy. "Vinpocetine increases cerebral blood flow and oxygenation in stroke patients: a near infrared spectroscopy and transcranial Doppler study." European Journal of Ultrasound 15.1 (2002): 85-91.
[6]Cruz-Neira, Carolina, Daniel J. Sandin, and Thomas A. DeFanti. "Surround-screen projection-based virtual reality: the design and implementation of the CAVE." Proceedings of the 20th annual conference on Computer graphics and interactive techniques. ACM, 1993.
[7]Anderson, Karen, and Kevin J. Gaston. "Lightweight unmanned aerial vehicles will revolutionize spatial ecology." Frontiers in Ecology and the Environment 11.3 (2013): 138-146.
[8]Schubert, E. Fred. Light-Emitting Diodes (2006). E. Fred Schubert, 2006.
[9]Sugawara, Hideto, et al. "Semiconductor light emitting device." U.S. Patent No. 5,153,889. 6 Oct. 1992.
[10]Schubert, E. F., et al. "Evidence of very strong inter-epitaxial-layer diffusion in Zn-doped GaInPAs/InP structures." Applied Physics A: Materials Science & Processing 60.6 (1995): 525-527.
[11]Schubert, E. F., and N. E. J. Hunt. "15000 hrs stable operation of resonant cavity light emitting diodes." Applied Physics A: Materials Science & Processing 66.3 (1998): 319-321.
[12]Antypas, G. A., and R. L. Moon. "Growth and Characterization of InP‐lnGaAsP Lattice-Matched Heterojunctions." Journal of The Electrochemical Society 120.11 (1973): 1574-1577.
[13]Kulkova, I. V., et al. "High-quality MOVPE butt-joint integration of InP/AlGaInAs/InGaAsP-based all-active optical components." Journal of Crystal Growth 402 (2014): 243-248.
[14]Lou, Yi-Lin, "The Fabrication of InP-Based Near-Infrared Broadband LED.", NTHU ENE, Master’s thesis (2015)
[15]Sohn, Jung Inn, et al. "A low temperature process for phosphorous doped ZnO nanorods via a combination of hydrothermal and spin-on dopant methods." Nanoscale 6.4 (2014): 2046-2051.
[16]Stevenson, R. Mark, et al. "A semiconductor source of triggered entangled photon pairs." nature 439.7073 (2006): 179.
[17]Masui, Hisashi. "Diode ideality factor in modern light-emitting diodes." Semiconductor Science and Technology 26.7 (2011): 075011.
[18]Granqvist, Claes G., and A. Hultåker. "Transparent and conducting ITO films: new developments and applications." Thin solid films 411.1 (2002): 1-5.
[19]Lee, H. K., J. S. Yu, and Y. T. Lee. "Thermal analysis and characterization of the effect of substrate thinning on the peformances of GaN‐based light emitting diodes." physica status solidi (a) 207.6 (2010): 1497-1504.
[20]Taillaert, Dirk, et al. "Grating couplers for coupling between optical fibers and nanophotonic waveguides." Japanese Journal of Applied Physics 45.8R (2006): 6071.
[21]Chen, Yi-Hong, "LED junction temperature measurements.", NCTU Electrophysics, Master’s thesis (2004)
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *