帳號:guest(18.118.186.100)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱世叡
作者(外文):Chiu, Shih-Jui
論文名稱(中文):以薄膜擠壓阻尼效應為基礎之CMOS微機電 電容式共振操作壓力感測器
論文名稱(外文):Squeeze-film Damping Based CMOS MEMS Capacitive Resonant Pressure Sensor
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-Cheng
口試委員(中文):傅建中
劉承賢
口試委員(外文):Fu, Chien-Chung
Liu, Cheng-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063509
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:62
中文關鍵詞:薄膜擠壓阻尼效應氣壓感測器電容式感測
外文關鍵詞:Squeeze-film damping effectPressure sensorCapacitive sensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:743
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
本論文目的在探討將薄膜擠壓阻尼效應(Squeeze-film damping effect)應用於氣壓感測。不同於傳統氣壓感測器需製作封閉式的空腔而簡化製程,並利用兩平板間的快速相互移動,引起空氣間的阻尼彈簧效應來感測氣壓變化
  本晶片使用TSMC 2P4M 0.35 m CMOS製程並利用矽基板做為震動結構的質量塊,以兩金屬板分別用於靜電式驅動以及電容式感測,並將氣壓計結構與感測電路整合於單一晶片上。在實驗過程中雖然有量測到明顯的耦合效應,但利用訊號的調制,亦能成功的量測到理想的結果。晶片總面積為2.8 mm × 2.8 mm,利用CMOS製程其矽基材來作為結構之質量塊與結構彈簧,經過深矽蝕刻製程、硫酸濕蝕刻、以及XeF2側向矽蝕刻的後製程釋放結構,形成厚度為40 μm之振動結構。本研究設計五種不同平板面積、彈力係數的壓力感測器,量測每個結構對氣壓的感測度。電容式感測得知共振頻隨壓力之變化,並與模擬結果做比較。以一面積為200 μm×200 μm的感測元件為例,其模擬感測度能達到1.23 Hz/Pa。而本論文感測度之所以能到達數個Pascals等級,其優勢在於利用極小的平板間距0.64 m能夠有效提高感測度。
  完成後製程後氣壓計結構量測的結果,常壓下量測到振頻為168.93 kHz,在較低壓10 kPa量測之振頻為98.2 kHz,感測度為0.78 Hz/Pa。量測感測度較模擬值差是因為後製程原因使震動結構較厚。最後以厚度60 μm模擬感測度為 0.77 Hz/Pa,與量測結果非常接近。
The purpose of this paper is to investigate the application of the squeeze-film damping effect for barometric pressure sensing. Unlike traditional pressure sensors, a sealed cavity is not required for operation of this type of sensors; therefore the fabrication process can be simplified. The rapid movement between the two plates causes an elastic damping effect between the air.
  The sensors are fabricated in the TSMC 2P4M 0.35 μm CMOS process. The resonant microstructure utilizes silicon as the proof mass and metallization layers as the electrodes for capacitive driving and sensing, with sensing circuitry monolithically integrated on a single chip. Signal modulation is used to overcome the significant coupling effect observed during the experiment. The total area of the chip is 2.8 mm × 2.8 mm. The fabrication starts with deep silicon etch from the backside, followed by front-side metal wet etch, deep silicon etch and isotropic XeF2 silicon etch to release the structures. The desired structural thickness is 40 μm. Five different pressure sensors with different plate area and elastic coefficient are designed. Capacitively sensed resonance changes with pressure are compared with the simulation results. The design with an area of 200 μm × 200 μm has a simulated sensitivity of 1.23 Hz/Pa. The improved sensitivity is owing to the use of a small plate spacing of 0.64 μm. The measured sensitivity is 0.78 Hz/Pa, which is attributed to the increased structural thickness up to 60 m.
摘要 I
Abstract II
圖目錄 VI
表目錄 IX
第1章 緒論 1
1-1前言 1
1-2文獻回顧 6
1-3研究動機 10
1-4量測系統架構 11
第2章 薄膜擠壓效應之分析與模擬 13
2-1薄膜擠壓效應介紹 13
2-2薄膜擠壓效應之理論 14
2-3薄膜擠壓效應之模擬 19
第3章 壓力感測器結構之設計與模擬 23
3-1感測器結構設計 23
3-2結構感測度模擬 25
3-3結構後製程設計 31
3-4感測電路設計 36
3-5截止電壓 38
第4章 量測與討論 41
4-1感測電路頻寬量測 41
4-2截止電壓量測 42
4-3壓力感測度量測 43
4-3-1壓電驅動感測度量測 45
4-3-2靜電驅動感測度量測 47
4-4量測與模擬比較 49
第5章結論與未來 55
5-1研究成果與討論 55
5-2未來工作 55
第6章 參考文獻 57
第7章 附錄 61
壓電片規格表 61

[1] J. M. Bustillo, R. T. Howe, and R. S. Muller, "Surface micromachining for microelectromechanical systems," Proc. IEEE, vol. 86, pp. 1552-1574, August. 1998.
[2] A. E. Kubba, A. Hasson, A. I. Kubba, and G. Hall, "A micro-capacitive pressure sensor design and modelling," Journal of Sensors and Sensor Systems, 5, 95-112, 2016
[3] J. C. Sanchez, "Semiconductor strain-gage pressure sensors," Instruments and Control Systems, 20, pp. 117,1963.
[4] A. C. M. Gieles and G.H. J. Somers, "Miniature pressure transducers with a silicon diaphragm," Philips technical review, 33, pp. 14-20, 1973.
[5] J. B. Lasky, S. R. Stiffler, F. R. White and J. R. Abernathy, " Silicon-on-insulator (SOI) by bonding and etch-back," International Electron Devices Meeting (IEDM 85), 7, pp. 684, 1985.
[6] K. Shimaoka, O. Tabata, M. Kimura, and S. Sugiyama, "Micro-diaphragm pressure sensor using polysilicon sacrificial layer etch-stop technique," Paper presented at Transducers '93. Yokohama.
[7] H. San, H. Zhang, Q. Zhang, Y. Yu, and X. Chen, "Silicon–glass-based single piezoresistive pressure sensors for harsh environment applications," Journal of Micromechanics and Microengineering, 23, pp. 8, 2013.
[8] S. E. Zhu, M. K. Ghatkesar, C. Zhang, and G. C. A. M. Janssen, "Graphene based piezoresistive pressure sensor," Applied Physics Letters, 102, 2013.
[9] W. P. Eaton and J. H. Smith, "Micromachined pressure sensors: review and recent developments," Smart Materials and Structures, 6, 530-539, 1997.
[10] C. S. Sander, J. W. Knutti, James D. Meindl, "A monolithic capacitive pressure Sensor with Pulse-Period Output," IEEE Transactions on Electron Devies, vol. ed-27, no. 5, May, 1980.
[11] J. B. Lasky, S. R. Stiffler, F. R. White and J. R. Abernathy, " Silicon-on-insulator (SOI) by bonding and etch-back," International Electron Devices Meeting (IEDM 85), 7, pp. 684, 1985.
[12] S. Sugiyama, K. Shimaoka and O. Tabata, "Surface-micromachined microdiaphragm pressure sensors," Sensors and Materials, 4, 5, pp. 265-275, 1993.
[13] O. Akar, T. Akin, K. Najafi, "A wireless batch sealed absolute capacitive pressure sensor," Sensors and Actuators, A95, pp. 29-38, 2001.
[14] M. A. Fonseca, J. M. English, M. V. Arx, and M. G. Allen, "Wireless micromachined ceramic pressure sensor for high-temperature applications," Journal of Microelectromechanical System, vol. 11, no. 4, August, 2002.
[15] D. J. Young, J. Du, Christian A. Zorman, and W. H. Ko, "High-temperature single-crystal 3C-SiC capacitive pressure sensor," IEEE Sensors Journal, vol. 4, no. 4, August, 2004.
[16] K. E. Petersen, F. Pourahmadi, J. Brown, M. Skinner and J. Tudor, "Resonant beam pressure sensor with silicon fusion bonding," Sensors and Actuators, 7, pp. 664, 1991.
[17] D. W. Burns, D. J. Zook, R. D. Horning, W. R. Herb, and H. Guckel, "A digital pressure sensor based on resonant microbeams," Solid-State Sensor and Actuator Workshop, 4, pp. 221, 1994.
[18] J. D. Zook, and D. W. Burns, "Characteristics of polysilicon resonant microbeams," Sensors and Actuators, A35, pp. 51-59, 1992.
[19] C. J. Welham, J. W. Gardner, and J. Greenwood, "A laterally driven micromachined resonant pressure sensor," Sensors and Actuators, A52, pp. 86-91, 1996.
[20] D. W. Burns, J. D. Zook, R. D. Horning, W. R. Herb, and H. Guckel, "Sealed-cavity resonant microbeam pressure sensor," Sensors and Actuators, A48, 86, pp. 179, 1995.
[21] M. Bao, and H. Yang, "Squeeze ?lm air damping in MEMS," Sensors and Actuators, A136, 3 , pp. 27, 2007.
[22] W. S. Griffin, H. H. Richardsen, and S. Yamamami, "A study of fluid squeeze film damping," Journal of Basic Engineering, pp. 451-456, 1966.
[23] I. B. Crandall, "The air damped vibrating system: Theoretical calibration of the condenser transmitter," Physics Review 11, pp. 449-460, 1917.
[24] J. J. Blech, "On isothermal squeeze films," J. Tribol., vol. 105, no. 4, pp. 615-620, 1983.
[25] T. Veijola, H. Kuisma, J. Lahdenpera, and T. Ryhanen, "Equivalent-circuit model of the squeezed gas film in a silicon accelerometer," Sensors and Actuators A, Phys., vol. 48, no. 3, pp. 239-248, May 1995.
[26] M. Andrews, I. Harm, and G. Turner, "A comparison of squeeze-film theory with measurements on a microstructure," Sensors and Actuators A, 36, pp. 79-87, 1993.
[27] M. K. Andrews, G. C. Turner, P. D. Harris, and I. M. Harris, "A resonantpressure sensor based on a squeezed film of gas," Sensors and Actuators A, 36, pp. 219-226, 1993.
[28] V. Godthi, J. Reddy, and R. Pratap, "A study of pressure-dependent squeeze film stiffness as a resonance modulator using static and dynamic measurements," Journal of Microelectromechanical Systems, vol. 24, no. 6, December 2015.
[29] S. S. Rao, "Vibration of continuous systems," John Wiley & Sons, 2007.
[30] R. J. Dolleman, D. Davidovikj, S. J. Cartamil-Bueno, H. S. J. van der Zant, and P. G. Steeneken, "Graphene squeeze-film pressure sensors," Nano Lett., 15, pp. 568-571, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *