帳號:guest(3.12.148.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林彥德
作者(外文):Lin, Yan-De
論文名稱(中文):紅光發光二極體及960×540砷化鎵系列微型化發光二極體陣列之研製
論文名稱(外文):The development of GaAs Red Light Emitting Diode and 960×540 GaAs-based Micro Light Emitting Diode Array
指導教授(中文):吳孟奇
徐子傑
指導教授(外文):Wu, Meng-Chyi
Hsu, Tzu-Chieh
口試委員(中文):張永富
張恆睿
口試委員(外文):Jang, Yung-Fu
Jang, Heng-Ruei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:104063503
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:98
中文關鍵詞:砷化鎵微型化發光二極體單獨尋址微顯示
外文關鍵詞:GaAsmicro-LED arrayindividually addressablemicro display
相關次數:
  • 推薦推薦:0
  • 點閱點閱:594
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文分為兩個部份第一部分為單顆紅光發光二極體之研製,在砷化鎵基板上成長磊晶層,隨後進行乾式濕刻,使用感應偶合電漿離子蝕刻系統(ICP-RIE)定義出高原平台(mesa),接著在n type及p type半導體鍍上n電極與p電極,經過快速熱退火(RTA)後,使用電漿輔助化學氣相沉積系統(PECVD)沉積SiO2作為介電質絕緣層用以抑制因深蝕刻導致的漏電流,為了使量測方便,使用了較大面積的金屬作為襯墊(Pad),避免基板吸光特性,利用磨薄(grinding)技術除去基板,並進行分晶(Split)及打線(Package),於是成功製作出不同尺寸的單顆紅光發光二極體,其發光直徑分別為50um、75um、100um、125um、150um、175um,第二部分為將此技術應用在更小的發光尺寸二極體元件製作,960×540 Micro light emitting diode array,為了降低基板吸光,於是將結構相似於單顆紅光二極體所使用的磊片利用濕式蝕刻除去基板後,轉置在藍寶石基板(Sapphire)上,如此一來,960×540 Micro Light Emitting Diode Array若成功製作,未來便能應用在顯示方面,在製程方面,使用ICP-RIE定義出mesa平台,為了盡量達成每一像素(pixel)的特性一致,於是將p type電極設計了網格狀,隨後鍍上p電極及n電極,經過RTA退火後,最後製作出960×540砷化鎵微型化發光二極體陣列。看上了發光二極體所具備的壽命長、體積小、功耗低、高亮度特點,都是將其應用於可攜帶式投影器重要的因素。本論文中,探討了紅光單顆發光二極體以及紅光、橘光、黃光960×540砷化鎵微型化發光二極體陣列之製造流程、電性及光特性。紅光單顆發光二極體發光波段為653nm,發光直徑為50um、75um、100um、125um、150um、175um,紅光、橘光、黃光960×540砷化鎵微型化發光二極體陣列發光波段分別為628nm、620nm、591nm,每一像素之間距離為12.8um,每顆像素大小為7.8um,陣列總長為13.824毫米,寬為8.448毫米,對角線長度為14.098毫米。
There are two important contents in the thesis. The first part is the development of single red light emitting diodes. The epitaxial layer is grown on gallium arsenide substrate. By using dry etching, the mesa was defined using an inductively coupled plasma ion etching system (ICP-RIE), and then n-metal and p-metal were deposited on n-type semiconductor and p-type semiconductor. After rapid thermal annealing (RTA), we use plasma-assisted chemical vapor deposition system (PECVD) to deposit SiO2 as a dielectric insulating layer to suppress the leakage current caused by deep etching. In addition, the size is too small to measure and a larger area of pad was used. However, the output light is easily absorbed by the substrate. To avoid the light absorbed by the substrate, we use grinding technology to remove the substrate. Finally, we adopt split and package for LED, and we successfully fabricate the single red light-emitting diodes including different luminous diameter. The luminous diameter is 50um, 75um, 100um, 125um, 150um, and 175um, respectively. We then adopt this technique to the fabrication of 960×540 Micro LED Array, and the structure which is similar to a single red light diode was used to fabricate 960×540 Micro LED Array. In order to reduce the light absorbed by substrate, we remove the substrate by using the wet etching. Afterwards, the wafer was transferred to a sapphire substrate. In this way, if 960×540 Micro LED Array can be successfully fabricated, it will be applied in the display in the future. In the process, the mesa was defined using an inductively coupled plasma ion etching system (ICP-RIE). The P-type electrode was designed in a grid-like shape to keep the characteristics of each pixel consistent. Second, the n metal and p metal were deposited on the n type semiconductor and p type semiconductor. After annealing by RTA, 960 × 540 gallium arsenide based Micro Light Emitting Diode Array was fabricated. Due to the Light-Emitting Diode with long life time, small size, low power consumption, and high brightness characteristics, these factors attract us to apply it to portable projectors. In this thesis, we discuss the manufacturing process, electrical, and optical properties of single red light emitting diode and red, orange, and yellow 960 × 540 Micro Light Emitting Diode Arrays. The emission band of single red light emitting diode is 653nm and the diameter of emitting light is 50um, 75um, 100um, 125um, 150um, and 175um. The emission band of red, orange, and yellow 960x540 Micro LED Array is 628nm, 620nm, and 591nm, respectively. About the 960 × 540 Micro LED Array, the distance between each pixel is 12.8um and each pixel size is 7.8um. The total length of the array is 13.824mm;the width is 8.448mm;the diagonal length is 14.098mm.
Chapter 1. Introduction 1
1-1 Introduction to Light Emitting Diodes 1
1-2 Research motivation 2
1-2.1 micro LED array 3
Chapter 2. The Basic Theory 8
2-1 The Basic theory of Light Emitting Diodes 8
2-2 LED Characterization 10
2-2-1 LED I-V characteristics and measurement system 10
2-2-2 C-V characteristics and measurement system 13
2-3 LED Optical characteristics 14
2-3-1 LED E-L characteristics and measurement system 14
2-3-2 LED L-I characteristics and measurement system 16
2-4 Transmission line measurement (TLM) 16
Chapter 3. Experimental procedure 23
3-1 Single LED Epitaxial Structure 23
3-2 the mask design concept 24
3-3 The Fabrication Process of Single red LED 26
3-3-1 Experimental details 27
3-4 Micro LED Array Epitaxial Structure 38
3-4-1 The design concept of Micro LED array 39
3-5 the mask design concept 40
3-6 The Fabrication Process of 960×540 Micro LED array 41
3-6-1 Experimental details 42
3-7 Fabrication Process of TLM 52
Chapter 4. Results and Discussion 54
4-1 The red LED TLM measurement 55
4-1-1 The red LED n metal TLM measurement 55
4-1-2 The red LED p metal TLM measurement 56
4-2 The red LED electrical characteristics measurement 57
4-2-1 The red LED turn on voltage and series resistance 57
4-2-2 The red LED leakage current 61
4-2-3 The red LED ideal factor 64
4-2-4 The red LED IV characteristics at different temperature 67
4-2-5 The red LED CV measurement 69
4-3 The red LED optical characteristics measurement 71
4-3-1 The red LED EL 71
4-3-2 The red LED LI 72
4-4 The red micro-LED array characteristics measurement 74
4-4-1 The red Micro-LED array turn on voltage and series resistance. 75
4-4-2 The red Micro-LED array leakage current and ideal factor 75
4-4-3 The red Micro-LED array CV measurement 76
4-4-4 The red Micro-LED array EL 77
4-4-5 The red Micro-LED array LI 78
4-4-6 The red Micro-LED array SEM 79
4-5 The orange micro LED array characteristics measurement 82
4-5-1 The orange Micro-LED array turn on voltage and series resistance 82
4-5-2 The orange Micro-LED array leakage current and ideal factor 83
4-5-3 The orange Micro-LED array CV measurement 84
4-5-4 The orange Micro-LED array EL 85
4-5-5 The orange Micro-LED array LI 86
4-6 The yellow micro-LED array characteristics measurement 87
4-6-1 The yellow Micro-LED array turn on voltage and series resistance 88
4-6-2 The yellow Micro-LED array leakage current and ideal factor 89
4-6-3 The yellow Micro-LED array CV measurement 89
4-6-4 The yellow Micro-LED array EL 90
4-6-5 The yellow Micro-LED array LI 91
Chapter 5. Conclusions 93
References 97
[1]E.F. Schubert, Light-Emitting Diodes. Cambridge U.K.: Cambridge Univ. Press, 2006.
[2]H. C. Casey, Jr. and M. B. Panish, “ Heterostructure Lasers,” New York, Academic, Part B, p. 3, 1978.
[3]K. Kobayashi, S. Kawata, A. Gomyo, I. Hino and T. Suzuki “Room-temperature cw operation of AlGaInP double-heterostructure visible lasers,” Electron. Lett. 21, 931 , 1985.
[4]C. H. Chen, S. A. Stockman, M. J. Peanasky, and C. P. Kuo, “OMVPE of AlGaInP for high-efficiency visible light-emitting diodes,” in High Brightness Light Emitting Diodes edited by G. B. Stringfellow and M. G. Craford, Semiconductors and Semimetals 48, (Academic Press, San Diego, 1997)
[5]Liao, Chien-Lan, et al. "High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth." IEEE Electron Device Letters 35.5 (2014): 563-565.
[6]R. C. Jao and W. Fang, “Development of a Flexible Lighting System for Plant Related Research Using Super Bright Red and Blue Light Emitting Diodes,” Acta Hort., vol. 578, pp. 133-139, 2001.
[7]http://epaper.cm.nsysu.edu.tw/wp/?p=9245
[8]http://ntcma.org/LIFE/NO12/FM.PDF
[9]W. C. Chong, W. K. Cho, Z. J. Liu, C. H. Wang and K. M. Lau, "1700 Pixels Per Inch (PPI) Passive-Matrix Micro-LED Display Powered by ASIC," 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, 2014, pp. 1-4.
[10]http://technews.tw/2017/01/09/sony-unveiled-cledis-display-at-ces-2017/
[11]An, Chao-Chyun, et al. "Study on flip chip assembly of high density micro-LED array." Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2011 6th International. IEEE, 2011.
[12]Chong, Wing Cheung, et al. "60.4: A Novel Full‐Color 3LED Projection System using R‐G‐B Light Emitting Diodes on Silicon (LEDoS) Micro‐displays." SID Symposium Digest of Technical Papers. Vol. 44. No. 1. Blackwell Publishing Ltd, 2013.
[13]K.-H. Huang and n T.-P. Che, “Light-emitting diode structure,” US Patent 5,661,742, 1997.
[14]E.F. Schubert, Light-Emitting Diodes. Cambridge U.K.: Cambridge Univ. Press, 2006.
[15]Khani, M., et al. "Transmission line model (TLM) method study of nanostructural AuGeNi/n-GaAs ohmic contact layer for different substrate deposition temperature." Electrical Engineering (ICEE), 2012 20th Iranian Conference on. IEEE, 2012.
[16]Wang, Yinghong, et al. "Research on rapid thermal annealing of ohmic contact to GaAs." Optoelectronics and Microelectronics (ICOM), 2012 International Conference on. IEEE, 2012.
[17]Henry, H. GEORGE. "Characterization of alloyed AuGe/Ni/Au ohmic contacts to n-doped GaAs by measurement of transfer length and under the contact sheet resistance." IEEE Transactions on Electron Devices 36.7 (1989): 1390-1393.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *