|
[1] Smartphone os market share. IDC, Q3, 2016. http://www.idc.com/promo/smartphone-market-share/os [2] WIKIPEDIA, Android (operating system). https://en.wikipedia.org/wiki/Android_(operating_system) [3] Enck W, Ongtang M, McDaniel P. On lightweight mobile phone application certification[C]//Proceedings of the 16th ACM conference on Computer and communications security. ACM, 2009: 235-245. [4] Felt A P, Chin E, Hanna S, et al. Android permissions demystified[C]//Proceedings of the 18th ACM conference on Computer and communications security. ACM, 2011: 627-638. [5] Grace M, Zhou Y, Zhang Q, et al. Riskranker: scalable and accurate zero-day android malware detection[C]//Proceedings of the 10th international conference on Mobile systems, applications, and services. ACM,2012: 281-294. [6] Peng H, Gates C, Sarma B, et al. Using probabilistic generative models for ranking risks of android apps[C]//Proceedings of the 2012 ACM conference on Computer and communications security. ACM, 2012: 241-252. [7] WEKA. http://www.cs.waikato.ac.nz/ml/weka/ [8] ARFF format. https://weka.wikispaces.com/ARFF+(stable+version) [9] X. Li, J. Liu, Y. Huo, R. Zhang and Y. Yao, "An Android malware detection method based on AndroidManifest file," 2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS), Beijing, 2016, pp. 239-243.doi: 10.1109/CCIS.2016.7790261 [10] SMALI file. https://fileinfo.com/extension/smali [11] n-gram https://en.wikipedia.org/wiki/N-gram [12] M. Qiao, A. H. Sung and Q. Liu, "Merging Permission and API Features for Android Malware Detection," 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), Kumamoto, 2016, pp. 566-571.doi: 10.1109/IIAI-AAI.2016.237 [13] K. Wang, T. Song and A. Liang, "Mmda: Metadata Based Malware Detection on Android," 2016 12th International Conference on Computational Intelligence and Security (CIS), Wuxi, 2016, pp. 598-602.doi: 10.1109/CIS.2016.0145 [14] S. S. Hansen, T. M. T. Larsen, M. Stevanovic and J. M. Pedersen, "An approach for detection and family classification of malware based on behavioral analysis," 2016 International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, 2016, pp. 1-5.doi: 10.1109/ICCNC.2016.7440587 [15] L. Ouyang, F. Dong and M. Zhang, "Android malware detection using 3-level ensemble," 2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS), Beijing, 2016, pp. 393-397.doi: 10.1109/CCIS.2016.7790290 [16] R. S. Pirscoveanu, S. S. Hansen, T. M. T. Larsen, M. Stevanovic, J. M. Pedersen and A. Czech, "Analysis of Malware behavior: Type classification using machine learning," 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), London, 2015, pp. 1-7.doi: 10.1109/CyberSA.2015.7166115 [17] M. Vajdi, A. Torkaman, M. Bahrololum, M. H. Tadayon and A. Salajegheh, "Proposed new features to improve Android malware detection," 2016 8th International Symposium on Telecommunications (IST), Tehran, 2016, pp. 100-104.doi: 10.1109/ISTEL.2016.7881791 [18] Chen Da, Zhang Hongmei and Zhang Xiangli, "Detection of Android malware security on system calls," 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, 2016, pp. 974-978.doi: 10.1109/IMCEC.2016.7867355 [19] A. Yewale and M. Singh, "Malware detection based on opcode frequency," 2016 International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), Ramanathapuram, 2016, pp. 646-649.doi: 10.1109/ICACCCT.2016.7831719 [20] S. Anwar, J. M. Zain, Z. Inayat, R. U. Haq, A. Karim and A. N. Jabir, "A static approach towards mobile botnet detection," 2016 3rd International Conference on Electronic Design (ICED), Phuket, 2016, pp. 563-567.doi: 10.1109/ICED.2016.7804708
|