帳號:guest(3.138.105.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周朋毅
作者(外文):Chou, Peng-Yi
論文名稱(中文):結合虛擬導通孔及冗餘導通孔的引導式自組裝暨多重圖案法之分解方法
論文名稱(外文):Optimizing DSA-MP Decomposition and Redundant Via Insertion with Dummy Vias
指導教授(中文):麥偉基
指導教授(外文):Mak, Wai-Kei
口試委員(中文):王廷基
何宗易
口試委員(外文):Wang, Ting-Chi
Ho, Tsung-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學號:104062625
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:27
中文關鍵詞:引導式自組裝冗餘導通孔虛擬導通孔多重圖案法
外文關鍵詞:Directed Self-AssemblyRedundant ViaDummy ViaMultiple Patterning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:462
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
在次世代的光刻技術中,嵌段共聚物引導式自組裝的出現讓其成為一個較經濟的替代技術。尤其引導式自組裝具有製造接觸孔洞和導通孔的良好潛力。但是,10奈米以下的製程技術所導致的高密度導通孔,使得單純使用引導式自組裝來製造所有的導通孔變成一件非常困難的事情。結合多重圖像法的技術和引導式自組裝來解決這樣的問題是一種可行的選擇,也就是利用多重光罩來製造用於引導嵌段共聚物的自組裝所需要的引導式自組裝之引導模板。此外,因為冗餘導通孔插入是一個可以有效提升製造性以及因為導通孔瑕疵而損失的良率,使其成為值得採用的技術。根據我們的了解,我們是第一個對在考量虛擬導通孔的輔助下之引導式自組裝暨多重圖案法之分解及冗餘導通孔插入來提升製造性的領域投入相關研究的團隊。實驗結果顯示,我們提出的方法較先前的研究更有效且更有效率,在所有的基準上皆可製造所有的導通孔。
Block copolymer directed self-assembly (DSA) has emerged as an economical complementary technology in the midst of next generation lithography. In particular, DSA has a strong potential for contact hole and via patterning. However, high via density in sub-10nm technology node makes it very hard to manufacture all the vias using DSA only. Complementing DSA with multiple patterning (MP) is an option such that multiple masks are used to print the DSA guiding templates for guiding the self-assembly of the block copolymer. Besides, redundant via insertion is desirable because it is an effective means to reduce yield loss due to via defect and improve reliability. To the best of our knowledge, we are the first work to consider DSA-MP decomposition and redundant via insertion with dummy via consideration to enhance manufacturability. Experimental results shows the effectiveness and efficiency of our method compared with previous works and resulted in 0 unmanufacturable vias for all benchmarks.
誌謝 v
Acknowledgements vii
摘要 ix
Abstract xi
1 Introduction 1
1.1 Block Copolymer Directed Self-Assembly . . . . . . . . . . . . . . . . 1
1.2 Via Manufacturability . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 DSA-MP with Redundant Via and Dummy Via . . . . . . . . . . . . . 2
1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Preliminaries 5
2.1 Guiding Template Assignment . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Redundant Via and Dummy Via Insertion . . . . . . . . . . . . . . . . 6
2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Algorithm 9
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Speed-up Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Experimental Results 17
5 Conclusion 21
References 23
[1] J. Ou, B. Yu, and D. Z. Pan, “Concurrent guiding template assignment and redundant via insertion for dsa-mp hybrid lithography,” in Proc. ISPD ’16, pp. 39–46.
[2] S. Y. Fang, Y. X. Hong, and Y. Z. Lu, “Simultaneous guiding template optimization and redundant via insertion for directed self-assembly,” in ICCAD ’15, pp. 410–417.
[3] K. Y. Lee, C. K. Koh, T. C. Wang, and K. Y. Chao, “Optimal post-routing redundant via insertion,” in Proc. ISPD ’08, pp. 111–117.
[4] Y. Du, Z. Xiao, M. D. F. Wong, H. Yi, and H. S. P. Wong, “Dsa-aware detailed routing for via layer optimization,” in Proc. SPIE ’14, pp. 9049 – 9049 – 8.
[5] F. G. Pikus and A. Torres, “Advanced multi-patterning and hybrid lithography techniques,” in ASP-DAC ’16, pp. 611–616.
[6] Z. W. Lin and Y. W. Chang, “Cut redistribution with directed self-assembly templates for advanced 1-d gridded layouts,” in ASP-DAC ’16, pp. 89–94.
[7] Z. W. Lin and Y. W. Chang, “Cut redistribution with directed self-assembly templates for advanced 1-d gridded layouts,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1, 2017.
[8] Y. H. Su and Y. W. Chang, “Dsa-compliant routing for two-dimensional patterns using block copolymer lithography,” in ICCAD ’16, pp. 1–8.
[9] Y. H. Su and Y. W. Chang, “Vcr: Simultaneous via-template and cut-templateaware routing for directed self-assembly technology,” in ICCAD ’16, pp. 1–8.
[10] K. L. Lin and S. Y. Fang, “Guiding template-aware routing considering redundant via insertion for directed self-assembly,” in ASP-DAC ’17, pp. 170–175.
[11] H. Yi, X. Y. Bao, R. Tiberio, and H.-S. P. Wong, “Design strategy of small topographical guiding templates for sub-15nm integrated circuits contact hole patterns using block copolymer directed self assembly,” in Proc. SPIE ’13, pp. 868010–868010–9.
[12] Y. Du, D. Guo, M. D. F. Wong, H. Yi, H. S. P. Wong, H. Zhang, and Q. Ma, “Block copolymer directed self-assembly (dsa) aware contact layer optimization for 10 nm 1d standard cell library,” in ICCAD ’13, pp. 186–193.
[13] Z. Xiao, C. X. Lin, M. D. F. Wong, and H. Zhang, “Contact layer decomposition to enable dsa with multi-patterning technique for standard cell based layout,” in ASP-DAC ’16, pp. 95–102.
[14] X. Y. Bao, H. Yi, C. Bencher, L. W. Chang, H. Dai, Y. Chen, P. T. J. Chen, and H. S. P. Wong, “Sram, nand, dram contact hole patterning using block copolymer directed self-assembly guided by small topographical templates,” in International Electron Devices Meeting, pp. 7.7.1–7.7.4, 2011.
[15] H. Yi, X. Y. Bao, J. Zhang, R. Tiberio, J. Conway, L. W. Chang, S. Mitra, and H. S. P. Wong, “Contact-hole patterning for random logic circuits using block copolymer directed self-assembly,” in Proc. SPIE ’12, pp. 8323 – 8323 – 6.
[16] W. Chung, S. Shim, and Y. Shin, “Redundant via insertion in directed selfassembly lithography,” in DATE ’16, pp. 55–60.
[17] L. Liebmann, V. Gerousis, P. Gutwin, M. Zhang, G. Han, and B. Cline, “Demonstrating production quality multiple exposure patterning aware routing for the 10nm node,” in Proc. SPIE ’14, pp. 905309–905309.
[18] M. A. Morris, “Directed self-assembly of block copolymers for nanocircuitry fabrication,” Microelectronic Engineering, pp. 207 – 217, 2015.
[19] H. Y. Chen, M. F. Chiang, Y. W. Chang, L. Chen, and B. Han, “Novel full-chip gridless routing considering double-via insertion,” in DAC ’06, pp. 755–760.
[20] “Taiwan semiconductor manufacturing company (tsmc) reference flow 5.0 and reference flow 6.0,”
[21] K. Y. Lee and T. C. Wang, “Post-routing redundant via insertion for yield/reliability improvement,” in ASP-DAC ’06, pp. 6 pp.–.
[22] K. Y. Lee, S. T. Lin, and T. C. Wang, “Redundant via insertion with wire bending,” in ISPD ’09, pp. 123–130.
[23] G. Xu, L. D. Huang, D. Z. Pan, and M. D. F. Wong, “Redundant-via enhanced maze routing for yield improvement,” in ASP-DAC ’05, pp. 1148–1151.
[24] H. Y. Chen, M. F. Chiang, Y. W. Chang, L. Chen, and B. Han, “Full-chip routing considering double-via insertion,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 844–857, 2008.
[25] K. Yuan, K. Lu, and D. Z. Pan, “Double patterning lithography friendly detailed routing with redundant via consideration,” in DAC ’09, pp. 63–66.
[26] S. Y. Fang, Y. X. Hong, and Y. Z. Lu, “Simultaneous guiding template optimization and redundant via insertion for directed self-assembly,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 156–169, 2017.
[27] Y. Badr, A. Torres, and P. Gupta, “Mask assignment and synthesis of dsa-mp hybrid lithography for sub-7nm contacts/vias,” in DAC ’15, pp. 1–6.
[28] Y. Badr, A. Torres, and P. Gupta, “Mask assignment and dsa grouping for dsamp hybrid lithography for sub-7 nm contact/via holes,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 913–926, 2017.
[29] J. Kuang, J. Ye, and E. F. Y. Young, “Simultaneous template optimization and mask assignment for dsa with multiple patterning,” in ASP-DAC ’16, pp. 75–82.
[30] Y. Xu and C. Chu, “A matching based decomposer for double patterning lithography,” in ISPD ’10, pp. 121–126.
[31] H. Tian, H. Zhang, Q. Ma, Z. Xiao, and M. D. F. Wong, “A polynomial time triple patterning algorithm for cell based row-structure layout,” in ICCAD ’12, pp. 57–64.
[32] S. Shim, W. Chung, and Y. Shin, “Redundant via insertion for multiple-patterning directed-self-assembly lithography,” in DAC ’16, pp. 41:1–41:6.
[33] S. Shim, W. Chung, and Y. Shin, “Defect probability of directed self-assembly lithography: Fast identification and post-placement optimization,” in ICCAD ’15, pp. 404–409.
[34] “Gurobi.” http://www.gurobi.com
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *