|
[1] Pop, M. (2009) Genome assembly reborn: recent computational challenges. Briefings in Bioinformatics, 10, 354-366. [2] Pop, M. and Salzberg, S. (2008) Bioinformatics challenges of new sequencing technology. Trends in Genetics, 24, 142-149. [3] Sahlin, K., Street, N., Lundeberg, J. and Arvestad, L. (2012) Improved gap size estimation for scaffolding algorithms. Bioinformatics, 28, 2215-2222. [4] Sahlin, K., Vezzi, F., Nystedt, B., Lundeberg, J. and Arvestad, L. (2014) BESST - efficient scaffolding of large fragmented assemblies. BMC Bioinformatics, 15, 281. [5] Nagarajan, N., Cook, C., Di Bonaventura, M., Ge, H., Richards, A., Bishop-Lilly, K., DeSalle, R., Read, T. and Pop, M. (2010) Finishing genomes with limited resources: lessons from an ensemble of microbial genomes. BMC Genomics, 11, 242. [6] Lu, C., Chen, K., Huang, S. and Chiu, H. (2014) CAR: contig assembly of prokaryotic draft genomes using rearrangements. BMC Bioinformatics, 15. [7] Rissman, A., Mau, B., Biehl, B., Darling, A., Glasner, J. and Perna, N. (2009) Reordering contigs of draft genomes using the Mauve Aligner. Bioinformatics, 25, 2071-2073. [8] Richter, D., Schuster, S. and Huson, D. (2007) OSLay: optimal syntenic layout of unfinished assemblies. Bioinformatics, 23, 1573-1579. [9] Van Hijum, S., Zomer, A., Kuipers, O. and Kok, J. (2005) Projector 2: contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies. Nucleic Acids Research, 33, W560-W566. [10] Kolmogorov, M., Raney, B., Paten, B. and Pham, S. (2014) Ragout - a reference-assisted assembly tool for bacterial genomes. Bioinformatics, 30, i302-i309. [11] Bosi, E., Donati, B., Galardini, M., Brunetti, S., Sagot, M., Lió, P., Crescenzi, P., Fani, R. and Fondi, M. (2015) MeDuSa: a multi-draft based scaffolder. Bioinformatics, 31, 2443-2451. [12] Mandric, I. and Zelikovsky, A. (2015) ScaffMatch: scaffolding algorithm based on maximum weight matching. Bioinformatics, 31, 2632-2638. [13] Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., Tang, J., Wu, G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y., Han, C., Cheung, D. W., Yiu, S., Peng, S., Xiaoqian, Z., Liu, G., Liao, X., Li, Y., Yang, H., Wang, J., Lam, T. and Wang, J. (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience, 1. [14] Gao, S., Sung, W. and Nagarajan, N. (2011) Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. Journal of Computational Biology, 18, 1681-1691. [15] Escalona, M., Rocha, S. and Posada, D. (2016) A comparison of tools for the simulation of genomic next-generation sequencing data. Nature Reviews Genetics, 17, 459-469. [16] Goodwin, S., McPherson, J. and McCombie, W. (2016) Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17, 333-351. [17] McElroy, K., Luciani, F. and Thomas, T. (2012) GemSIM: general, error-model based simulator of next-generation sequencing data. BMC Genomics, 13, 74. [18] Hunt, M., Newbold, C., Berriman, M. and Otto, T. (2014) A comprehensive evaluation of assembly scaffolding tools. Genome Biology, 15, R42. [19] Langmead, B. and Salzberg, S. (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357-359. [20] Edmonds, J. (1965) Paths, trees, and flowers. Journal canadien de mathématiques, 17, 449-467. [21] Gurevich, A., Saveliev, V., Vyahhi, N. and Tesler, G. (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29, 1072-1075. [22] Zerbino, D. and Birney, E. (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18, 821-829. [23] Salzberg, S., Phillippy, A., Zimin, A., Puiu, D., Magoc, T., Koren, S., Treangen, T., Schatz, M., Delcher, A., Roberts, M., Marcais, G., Pop, M. and Yorke, J. (2012) GAGE: a critical evaluation of genome assemblies and assembly algorithms. Genome Research, 22, 557-567. [24] Kurtz, S., Phillippy, A., Delcher, A., Smoot, M., Shumway, M., Antonescu, C. and Salzberg, S. (2004) Versatile and open software for comparing large genomes. Genome Biology, 5, R12.
|