帳號:guest(3.15.192.137)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪崇堯
作者(外文):Hung, Chung-Yao
論文名稱(中文):多重排高標準元件之擺置合法化
論文名稱(外文):Mixed-Cell-Height Standard Cell Placement Legalization
指導教授(中文):麥偉基
指導教授(外文):Mak, Wai-Kei
口試委員(中文):何宗易
王廷基
口試委員(外文):Ho, Tsung-Yi
Wang, Ting-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學號:104062576
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:25
中文關鍵詞:合法化擺置多重排高標準元件
外文關鍵詞:LegalizationPlacementMixed-Cell-HeightStandard Cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:102
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
傳統的標準元件庫包含了有著相同高度但具備不同功能的元件,統一的高度讓設計師可以將元件對準在排中的擺置點上,進而加速超大型積體電路的設計流程。但是,在先進製程中,元件被設計成具有不同的高度。有了不同的高度,我們可以將一些簡單的元件(例如反向器)設計成單排高,將複雜的元件(例如正反器)設計成多排高。然而,使用多重排高元件庫會使得擺置合法化變得更加困難。在這篇論文中,我們提出了一個針對多重排高標準元件庫的平行合法化方法來最小化總位移。實驗結果顯示我們的方法相較於目前最新的研究而言,在平均的位移上有18%的進步。
A traditional standard cell library consists of various functional cells with the same height, which could speed up VLSI design flow since designers could align cells to placement sites in rows. However, in advanced nodes, cells are designed with different heights. With mixed cell heights, we can design simple cells (e.g. inverters) as single-row-height cells, and complex cells (e.g. flip-flops) as multiple-row-height cells. Nevertheless, placement legalization becomes more difficult with mixed-cell-height libraries. In this thesis, we propose a parallel legalization method for mixed-cell-height standard cell libraries to minimize total displacement. Experimental results show that our method has a 18% improvement on average in displacement compared with the state-of-the-art work.
誌謝 v
Acknowledgements vii
摘要 ix
Abstract xi
1 Introduction 1
1.1 Mixed-Cell-Height Standard Cell Library . . . . . . . . . . . . . . . . 1
1.2 Standard Cell Placement . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Preliminaries 5
2.1 Legalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Power-Rail Alignment Constraint . . . . . . . . . . . . . . . . . . . . 5
2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Proposed Algorithm 7
3.1 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Cell Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Parallel Legalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 LP-based Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Experimental Results 17
5 Conclusion 21
References 23
[1] J. Chen, Z. Zhu, W. Zhu, and Y.-W. Chang, “Toward optimal legalization for mixed-cell-height circuit designs,” in Proceedings of the 54th Annual Design Automation Conference, 2017.
[2] C.-H. Wang, Y.-Y. Wu, J. Chen, Y.-W. Chang, S.-Y. Kuo, W. Zhu, and G. Fan, “An effective legalization algorithm for mixed-cell-height standard cells,” in Proceedings of the 22nd Asia and South Pacific Design Automation Conference, 2017.
[3] W.-K. Chow, C.-W. Pui, and E. F. Y. Young, “Legalization algorithm for multiplerow height standard cell design,” in Proceedings of the 53rd Annual Design Automation Conference, 2016.
[4] J. Wang, A. K. Wong, and E. Y. Lam, “Standard cell layout with regular contact placement,” IEEE Transactions on Semiconductor Manufacturing, vol. 17, 2004.
[5] S.-H. Baek, H.-Y. Kim, Y.-K. Lee, D.-Y. Jin, S.-C. Park, and J.-D. Cho, “Ultrahigh density standard cell library using multi-height cell structure,” in Proc. SPIE, 2008.
[6] S. Dobre, A. B. Kahng, and J. Li, “Mixed cell-height implementation for improved design quality in advanced nodes,” in Proceedings of the 34th International Conference on Computer-Aided Design, 2015.
[7] M. K. Hsu and Y. W. Chang, “Unified analytical global placement for large-scale mixed-size circuit designs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, 2012.
[8] N. Viswanathan, G. J. Nam, C. J. Alpert, P. Villarrubia, H. Ren, and C. Chu, “Rql: Global placement via relaxed quadratic spreading and linearization,” in Proceedings of the 44th Annual Design Automation Conference, 2007.
[9] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, and E. F. Y. Young, “Ripple: An effective routability-driven placer by iterative cell movement,” in Proceedings of the 30th International Conference on Computer-Aided Design, 2011.
[10] X. He, T. Huang, W. K. Chow, J. Kuang, K. C. Lam, W. Cai, and E. F. Y. Young, “Ripple 2.0: High quality routability-driven placement via global router integration,” in Proceedings of the 50rd Annual Design Automation Conference, 2013.
[11] M. C. Kim and I. L. Markov, “Complx: A competitive primal-dual lagrange optimization for global placement,” in Proceedings of the 49rd Annual Design Automation Conference, 2012.
[12] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev, “Polar: Placement based on novel rough legalization and refinement,” in Proceedings of the 32th International Conference on Computer-Aided Design, 2013.
[13] T. Lin, C. Chu, and G. Wu, “Polar 3.0: An ultrafast global placement engine,” in Proceedings of the 34th International Conference on Computer-Aided Design, 2015.
[14] N. Viswanathan, M. Pan, and C. Chu, “Fastplace 3.0: A fast multilevel quadratic placement algorithm with placement congestion control,” in Proceedings of the 12nd Asia and South Pacific Design Automation Conference, 2007.
[15] T. C. Chen, Z. W. Jiang, T. C. Hsu, H. C. Chen, and Y. W. Chang, “Ntuplace3: An analytical placer for large-scale mixed-size designs with preplaced blocks and density constraints,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, 2008.
[16] M.-C. Kim, N. Viswanathan, C. J. Alpert, I. L. Markov, and S. Ramji, “Maple: Multilevel adaptive placement for mixed-size designs,” in Proceedings of the 2012 International Symposium on Physical Design, 2012.
[17] M. C. Kim, D. J. Lee, and I. L. Markov, “Simpl: An effective placement algorithm,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, 2012.
[18] W.-K. Chow, J. Kuang, X. He, W. Cai, and E. F. Young, “Cell density-driven detailed placement with displacement constraint,” in Proceedings of the 2014 International Symposium on Physical Design, 2014.
[19] S. Popovych, H. H. Lai, C. M. Wang, Y. L. Li, W. H. Liu, and T. C. Wang, “Densityaware detailed placement with instant legalization,” in Proceedings of the 51rd Annual Design Automation Conference, 2014.
[20] U. Brenner, “Vlsi legalization with minimum perturbation by iterative augmentation,” in Proceedings of the Conference on Design, Automation and Test in Europe, 2012.
[21] H. Tian, Y. Du, H. Zhang, Z. Xiao, and M. D. F. Wong, “Triple patterning aware detailed placement with constrained pattern assignment,” in Proceedings of the 33th International Conference on Computer-Aided Design, 2014.
[22] Y. Lin, B. Yu, B. Xu, and D. Z. Pan, “Triple patterning aware detailed placement toward zero cross-row middle-of-line conflict,” in Proceedings of the 34th International Conference on Computer-Aided Design, 2015.
[23] Z.-W. Lin and Y.-W. Chang, “Detailed placement for two-dimensional directed self-assembly technology,” in Proceedings of the 54th Annual Design Automation Conference, 2017.
[24] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed placement algorithm,” in Proceedings of the 24th International Conference on Computer-Aided Design, 2005.
[25] G. Wu and C. Chu, “Detailed placement algorithm for vlsi design with doublerow height standard cells,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, 2016.
[26] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li, C. J. Alpert, and D. Z. Pan, “Mrdp: Multiple-row detailed placement of heterogeneous-sized cells for advanced nodes,” in Proceedings of the 35th International Conference on Computer-Aided Design, 2016.
[27] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: Fast legalization of standard cell circuits with minimal movement,” in Proceedings of the 2008 International Symposium on Physical Design, 2008.
[28] U. Brenner, “Bonnplace legalization: Minimizing movement by iterative augmentation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, 2013.
[29] S. Li and C.-K. Koh, “Mixed integer programming models for detailed placement,” in Proceedings of the 2012 International Symposium on Physical Design, 2012.
[30] Gurobi http://www.gurobi.com.
[31] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “Ispd 2015 benchmarks with fence regions and routing blockages for detailed-routing-driven placement,” in Proceedings of the 2015 International Symposium on Physical Design, 2015.
[32] Cadence LEF/DEF Language Reference.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *