|
[1] IPCC Fifth Assessment Report.http://en.wikipedia.org/wiki/IPCC_Fifth_Assessment_Report. [2] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt, Q. Koziol,and M. Snir. Taming parallel i/o complexity with auto-tuning. InSC, pages68:1–68:12, 2013. [3] S. B. Bin Dong and K. Wu. ”spatially clustered join on heterogeneous scientificdata sets”. In2015 IEEE International Conference on Big Data (IEEE BigData2015), 2015. [4] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan. Ultra-high performance three-dimensional electromagnetic relativistic kinetic plasmasimulation.Physics of Plasmas, 15(5):7, 2008. [5] S. Byna, J. Chou, O. R ̈ubel, Prabhat, H. Karimabadi, W. S. Daughton,V. Roytershteyn, E. W. Bethel, M. Howison, K.-J. Hsu, K.-W. Lin, A. Shoshani,A. Uselton, and K. Wu. Parallel I/O, analysis, and visualization of a trillionparticle simulation. InSC, page 59, 2012. [6] C. Chen, X. Huang, H. Fu, and G. Yang. The chunk-locality index: An effi-cient query method for climate datasets. InParallel and Distributed ProcessingSymposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International,pages 2104–2110, May 2012. [7] J. Chou, M. Howison, B. Austin, K. Wu, J. Qiang, E. W. Bethel, A. Shoshani,O. Rbel, and P. R. D. Ryne. Parallel index and query for large scale dataanalysis. In2011 International Conference for High Performance Computing,Networking, Storage and Analysis (SC), pages 1–11, Nov 2011. [8] D. Comer. Ubiquitous b-tree.ACM Comput. Surv., 11(2):121–137, June 1979. [9] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush,P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. DeWitt, B. Heath,D. Maier, S. Madden, J. Patel, M. Stonebraker, and S. Zdonik. A Demonstra-tion of SciDB: A Science-oriented DBMS.Proc. VLDB Endow., 2(2):1534–1537,Aug. 2009. [10] G. S. Davidson, K. W. Boyack, R. A. Zacharski, S. C. Helmerich, and J. R.Cowie. Data-centric computing with the netezza architecture. Technical ReportSAND2006-3640, Sandia National Laboratory, 2006. [11] A. Herrera. Minmax indexes. pg hackers. [12] Apache hive.https://hive.apache.org/. [13] S. Klasky, H. Abbasi, et al. In Situ Data Processing for Extreme-Scale Com-puting. InSciDAC, July 2011. [14] ADIOS.http://www.nccs.gov/user-support/center-projects/adios/. [15] S. Lakshminarasimhan, D. A. Boyuka, S. V. Pendse, X. Zou, J. Jenkins,V. Vishwanath, M. E. Papka, and N. F. Samatova. Scalable in situ scientificdata encoding for analytical query processing. InHPDC, pages 1–12, 2013. [16] S. Lakshminarasimhan, J. Jenkins, et al. ISABELA-QA: Query-driven analyticswith ISABELA-compressed extreme-scale scientific data. InSC, pages 1–11,Nov 2011. [17] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham, R. Ross,and N. F. Samatova. Compressing the Incompressible with ISABELA: In-situReduction of Spatio-temporal Data. InEuro-Par, pages 366–379, 2011. [18] K.-L. Ma. In situ visualization at extreme scale: Challenges and opportunities.Computer Graphics and Applications, IEEE, 29(6):14–19, Nov 2009. [19] A. Nanda. Smart scans meet storage indexes.Oracle Magazine, 2011. [20] P. O’Neil. Model 204 architecture and performance. In2nd International Work-shop in High Performance Transaction Systems, Asilomar, CA, volume 359 ofLecture Notes in Computer Science, pages 40–59. Springer-Verlag, Sept. 1987. [21] P. O’Neil and E. O’Neil.Database: principles, programming, and performance.Morgan Kaugmann, 2nd edition, 2000. [22] A. Shoshani and D. Rotem, editors.Scientific Data Management: Challenges,Technology, and Deployment. Chapman & Hall/CRC Press, 2010. [23] K. Stockinger, E. W. Bethel, S. Campbell, E. Dart, , and K. Wu. DetectingDistributed Scans Using High-Performance Query-Driven Visualization. InSC.IEEE Computer Society Press, Nov. 2006. [24] K. Stockinger, J. Shalf, W. Bethel, and K. Wu. Query-driven visualization oflarge data sets. InIEEE Visualization 2005, Minneapolis, MN, October 23-28,2005, page 22, 2005. [25] The HDF Group. HDF5 user guide.http://hdf.ncsa.uiuc.edu/HDF5/doc/H5.user.html, 2010. [26] T. Tu, H. Yu, et al. Remote runtime steering of integrated terascale simulationand visualization. InSC HPC Analytics Challenge, 2006. [27] Unidata.The NetCDF users’ guide.http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/, 2010. [28] K. Wu, S. Ahern, et al. FastBit: Interactively searching massive data. InSciDAC, 2009. [29] T. Wu, J. Chou, N. Podhorszki, J. Gu, Y. Tian, S. Klasky, and K. Wu. Applyblock index technique to scientific data analysis and i/o systems. InIEEE/ACMInternational Workshop on Distributed Big Data Management (DBDM) at CC-Grid, May 2017. [30] T. Wu, H. Shyng, J. Chou, B. Dong, and K. Wu. Indexing blocks to reduce spaceand time requirements for searching large data files. In2016 16th IEEE/ACMInternational Symposium on Cluster, Cloud and Grid Computing (CCGrid),pages 398–402, May 2016. |