|
[1] J. Burger, C. Teuscher, and M. Perkowski, "Digital Logic Synthesis for Memristors," in Proc. Reed-Muller Workshop, 2013. [2] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, R.S. Williams, "Memristive Switches Enable Stateful Logic Operations via Material Implication," Nature, vol. 464, pp. 873-876, April 2010. [3] J. P. Carbajal, J. Dambre, M. Hermans, and B. Schrauwen, "Memristor Models for Machine Learning," Neural Computation, no. 27, pp. 725-747, 2015. [4] L. O. Chua, "Memristor-The Missing Circuit Element," IEEE Trans. on Circuit Theory, vol. 18, pp. 507-519, 1971. [5] A. K. Maan, D. A. Jayadevi, and A. P. James, "A Survey of Memristive Threshold Logic Circuits," IEEE Trans. on Neural Networks and Learning Systems, vol. 28, pp. 1734-1746, May 2016. [6] G. Kumar and K. Datta, "Design of digital functional blocks using hybrid memristor structures," in Proc. IEEE TENCON, November 2015. [7] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, "MAGIC-Memristor Aided Logic," IEEE Trans. on Circuits and Systems II, vol. 61, no. 11, pp. 895-899, November 2014. [8] E. Lehtonen and M. Laiho, "Stateful Implication Logic with Memristor," in Proc. IEEE International Symposium on Nanoscale Architectures, pp. 33-36, July 2009. [9] E. Lehtonen, J.H. Poikonen, and M. Laiho, "Two Memristors Suffice to Compute All Boolean Functions," Electron. Lett., vol. 46, no. 3, pp. 239-240, February 2010. [10] F. Lalchhandama, B. G. Sapui, and K. Datta, "An Improved Approach for the Synthesis of Boolean Functions Using Memristor Based IMPLY and INVERSE-IMPLY Gates," in Proc. IEEE Computer Society Annual Symposium on VLSI, pp. 319-324, July 2016. [11] A. Raghuvanshi, "Synthesis of Incompletely Specied Logic Functions With Memristor-Realized Material Implication Gates and a New Notation to Describe Circuits From Such Gates," in Proc. IEEE 44th International Symposium on Multiple-Valued Logic, 2014. [12] A. Raghuvanshi and M. Perkowski, "Logic Synthesis and a Generalized Notation for Memristor-Realized Material Implication Gates," in Proc. IEEE IC-CAD, pp. 470-477, 2014. [13] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The Missing Memristor Found," Nature, vol. 453, pp. 80-83, May 2008. [14] M. Teimoory, A. Amirsoleimani, J. Shamsi, A. Ahmadi, S. Alirezaee, and M. Ahmadi, "Optimized Implementation of Memristor-Based Full Adder by Material Implication Logic," in Proc. IEEE International Conference on Electronics, Circuits and Systems, pp. 562-565, December 2014. [15] I. Vourkas and G. Ch. Sirakoulis, "Emerging Memristor-Based Logic Circuit Design Approaches: A Review," IEEE Circuits and Systems Magazine, vol. 16, pp. 15-30, August 2016. [16] A. N. Whitehead and B. Russell, "Principia Mathematica," vol. I, no. 7, Cambridge University Press, 1910. [17] S. Wang, W. Wang, C. Yakopcic, E. Shin, T. M. Taha, and G. Subramanyam, "Memristor Devices for use in Neuromorphic Systems," in Proc. IEEE National Aerospace and Electronics Conference, July 2016. [18] C. Yakopcic, T. M. Taha, and R. Hasan, "Hybrid Crossbar Architecture for a Memristor Based Memory," in Proc. IEEE National Aerospace and Electronics Conference, June 2014. [19] Berkeley Logic Synthesis and Verication Group. ABC: A System for Sequential Synthesis and Verication. Available: https://people.eecs.berkeley.edu/~alanmi/abc/
|