|
[1] M. Andriluka, L. Pishchulin, P. V. Gehler, and B. Schiele. 2d human pose estimation: New benchmark and state of the art analysis. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages 3686–3693, 2014. [2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. CoRR, abs/1701.07875, 2017. [3] D. Berthelot, T. Schumm, and L. Metz. BEGAN: boundary equilibrium generative adversarial networks. CoRR, abs/1703.10717, 2017. [4] A. Borji and L. Itti. Exploiting local and global patch rarities for saliency detection. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16-21, 2012, pages 478–485, 2012. [5] G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object classes in video: A highdefinition ground truth database. Pattern Recognition Letters, 30(2):88–97, 2009. [6] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand. What do different evaluation metrics tell us about saliency models? CoRR, abs/1604.03605, 2016. [7] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun. Monocular 3d object detection for autonomous driving. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2147–2156, 2016. [8] Y. Chen, C. Shen, X.Wei, L. Liu, and J. Yang. Adversarial posenet: A structure-aware convolutional network for human pose estimation. CoRR, abs/1705.00389, 2017. [9] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 3213–3223, 2016. [10] A. Criminisi, P. P´erez, and K. Toyama. Region filling and object removal by exemplarbased image inpainting. IEEE Trans. Image Processing, 13(9):1200–1212, 2004. [11] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20-26 June 2005, San Diego, CA, USA, pages 886–893, 2005. [12] J. Dickmann, N. Appenrodt, J. Klappstein, H. Bl¨ocher, M. M. Muntzinger, A. Sailer, M. Hahn, and C. Brenk. Making bertha see even more: Radar contribution. IEEE Access, 3:1233–1247, 2015. [13] P. Doll´ar, C.Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell., 34(4):743–761, 2012. [14] A. Ess, B. Leibe, K. Schindler, and L. J. V. Gool. A mobile vision system for robust multi-person tracking. In 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), 24-26 June 2008, Anchorage, Alaska, USA, 2008. [15] C. Finn, I. J. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through video prediction. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 64–72, 2016. [16] F. Flohr and D. Gavrila. Pedcut: an iterative framework for pedestrian segmentation combining shape models and multiple data cues. In British Machine Vision Conference, BMVC 2013, Bristol, UK, September 9-13, 2013, 2013. [17] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The KITTI dataset. I. J. Robotics Res., 32(11):1231–1237, 2013. [18] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages 580–587, 2014. [19] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio. Generative adversarial networks. CoRR, abs/1406.2661, 2014. [20] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of wasserstein gans. CoRR, abs/1704.00028, 2017. [21] C. Guo, Q. Ma, and L. Zhang. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), 24-26 June 2008, Anchorage, Alaska, USA, 2008. [22] C. Guo and L. Zhang. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans. Image Processing, 19(1):185–198, 2010. [23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778, 2016. [24] X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 18-23 June 2007, Minneapolis, Minnesota, USA, 2007. [25] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected convolutional networks. CoRR, abs/1608.06993, 2016. [26] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and Locally Consistent Image Completion. ACM Transactions on Graphics (Proc. of SIGGRAPH 2017), 36(4):107:1–107:14, 2017. [27] M. Jiang, S. Huang, J. Duan, and Q. Zhao. SALICON: saliency in context. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 1072–1080, 2015. [28] S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for human pose estimation. In British Machine Vision Conference, BMVC 2010, Aberystwyth, UK, August 31 - September 3, 2010. Proceedings, pages 1–11, 2010. [29] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. M. Bhandarkar, W. Matusik, and A. Torralba. Eye tracking for everyone. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2176–2184, 2016. [30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States., pages 1106–1114, 2012. [31] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image super-resolution using a generative adversarial network. CoRR, abs/1609.04802, 2016. [32] J. Li, X. Liang, Y.Wei, T. Xu, J. Feng, and S. Yan. Perceptual Generative Adversarial Networks for Small Object Detection. ArXiv e-prints, June 2017. [33] Y. Li, S. Liu, J. Yang, and M. Yang. Generative face completion. CoRR, abs/1704.05838, 2017. [34] P. Luc, C. Couprie, S. Chintala, and J. Verbeek. Semantic segmentation using adversarial networks. CoRR, abs/1611.08408, 2016. [35] L. Marchesotti, C. Cifarelli, and G. Csurka. A framework for visual saliency detection with applications to image thumbnailing. In IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009, pages 2232–2239, 2009. [36] G.M´attyus, S.Wang, S. Fidler, and R. Urtasun. HD maps: Fine-grained road segmentation by parsing ground and aerial images. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 3611–3619, 2016. [37] M. Mirza and S. Osindero. Conditional generative adversarial nets. CoRR, abs/1411.1784, 2014. [38] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII, pages 483–499, 2016. [39] H. Pan and H. Jiang. Supervised adversarial networks for image saliency detection. CoRR, abs/1704.07242, 2017. [40] J. Pan, C. Canton-Ferrer, K. McGuinness, N. E. O’Connor, J. Torres, E. Sayrol, and X. Gir´o i Nieto. Salgan: Visual saliency prediction with generative adversarial networks. CoRR, abs/1701.01081, 2017. [41] D. Pathak, P. Kr¨ahenb¨uhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature learning by inpainting. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2536–2544, 2016. [42] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015. [43] G. Ros, S. Ramos, M. Granados, A. Bakhtiary, D. V´azquez, and A. M. L´opez. Visionbased offline-online perception paradigm for autonomous driving. In 2015 IEEE Winter Conference on Applications of Computer Vision, WACV 2015, Waikoloa, HI, USA, January 5-9, 2015, pages 231–238, 2015. [44] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39(4):640–651, 2017. [45] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014. [46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 1–9, 2015. [47] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 1799–1807, 2014. [48] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating videos with scene dynamics. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 613–621, 2016. [49] X. Wang, A. Shrivastava, and A. Gupta. A-fast-rcnn: Hard positive generation via adversary for object detection. CoRR, abs/1704.03414, 2017. [50] C. Wojek, S. Walk, and B. Schiele. Multi-cue onboard pedestrian detection. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pages 794–801, 2009. [51] J. Xie, M. Kiefel, M. Sun, and A. Geiger. Semantic instance annotation of street scenes by 3d to 2d label transfer. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 3688–3697, 2016. [52] Y. Xue, T. Xu, H. Zhang, R. Long, and X. Huang. SegAN: Adversarial Network with Multi-scale L 1 Loss for Medical Image Segmentation. ArXiv e-prints, June 2017. [53] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li. High-resolution image inpainting using multi-scale neural patch synthesis. CoRR, abs/1611.09969, 2016. [54] R. Yeh, C. Chen, T. Lim, M. Hasegawa-Johnson, and M. N. Do. Semantic image inpainting with perceptual and contextual losses. CoRR, abs/1607.07539, 2016. [55] Z. Zhang, S. Fidler, and R. Urtasun. Instance-level segmentation for autonomous driving with deep densely connected mrfs. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 669–677, 2016. [56] J. J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. CoRR, abs/1609.03126, 2016. |