帳號:guest(13.58.243.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖健翔
作者(外文):Liao, Chien-Hsiang
論文名稱(中文):在GPU上的快速模板匹配演算法
論文名稱(外文):Fast Template Matching Algorithm on GPU
指導教授(中文):李哲榮
指導教授(外文):Lee, Che-Rung
口試委員(中文):周志遠
韓永楷
口試委員(外文):Chou, Jerry
Hon, Wing-Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系所
學號:104062524
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:21
中文關鍵詞:GPU模板匹配雜湊函數
外文關鍵詞:GPUTemplateMatchinghash
相關次數:
  • 推薦推薦:0
  • 點閱點閱:77
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
模型匹配是用於尋找與模板圖像匹配之圖像的技術,常用於一些
平面圖像處理中,並存在有許多變體。
本篇論文將利用雜湊函數探討模板匹配問題,文中演算過程使用
雜湊函數將圖形轉為2D 矩陣處理,並且雜湊函式具有旋轉和翻轉不變
性,最後透過檢查具有相同雜湊值圖像塊的方式,找出兩個圖像之間
所有完全相同的模板。並透過GPU 作進一步加速計算,透過實驗結果
可得知比起CPU 版本,本方法在GPU 上的速度可以提升25 倍。
Template Matching is a technique to identify the parts on an image or subsequences
of a sequence to match a prede ned template. It can be used in digital image
processing. There are many variations of the template matching problem.
In this thesis, we have presented a matrix-based template matching algorithm. The
algorithm utilizes a hash function to transform an image into a 2-D matrix. The
hash function is rotation and re
ection invariance. Then check the image blocks
that have the same hash values to identify all the exact same templates between
two images. And the method has implemented on GPU. The experimental results
show that the performance on GPU is accelerated approximately 25 times than the
CPU version.
Chinese Abstract i
Abstract ii
Contents iv
List of Figures vi
List of Tables vii
1 Introduction 1
2 Background 3
2.1 Template Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 GPU and CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Related research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Methodology 8
3.1 Problem de nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Rotation invariant hashing . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Experiments 14
4.1 Computing time of each phase . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Comparison between GPU and CPU . . . . . . . . . . . . . . . . . . 15
4.3 Comparison of Hash methods . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Maximum hash value . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Discussion for the k value . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6 Template size and number . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Conclusion 19
[1] R. Brunelli, Template Matching Techniques in Computer Vision: Theory and
Practice, Wiley, 2009.
[2] M. S. Aksoy, O. Torkul and I. H. Cedimoglu, "An industrial visual inspection
system that uses inductive learning," Journal of Intelligent Manufacturing, Vol. 15,
No. 4, pp. 569-574, 2004.
[3] T. Kyriaco, G. Bugmann, and S. Lauria, "Vision-based urban navigation procedures
for verbally instructed robots," Robotics and Autonomous Systems, Vol. 51, No. 1,
pp. 69-80, 2005.
[4] J. F. Canny, "A Computational Approach to Edge Detection," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI - 8, No. 6, November, pp. 679-
698, 1986.
[5] R. Maini and H. Aggarwal, "Study and Comparison of Various Image Edge
Detection Techniques," International Journal of Image Processing, Vol. 3, No. 1, pp.
1-11, 2009.
[6] R. Brunelli and T. Poggio, "Face Recognition: Features versus Templates", IEEE
Trans. on PAMI, Vol. 15, No. 10, pp. 1042-1052,1993.
[7] D. A. Socolinsky, "Thermal Face Recognition in an Operational Scenario,"
Proceedings of the IEEE Computer Society on Computer Vision and Pattern
Recognition, pp. 1012-1019, 2004.
[8] R. F. Anderson, J. S. Kirtzic and O. Daescu, "Applying Parallel Design Techniques
to Template Matching with GPUs," High Performance Computing for
Computational Science – VECPA, pp. 456-468, 2010.
[9] L. Tolhuizen, "Subfield checking in BCH-decoding," Proceedings of IEEE
International Symposium on Information Theory, 1997
[10] N. F. Huang, "A GPU-Based Multiple-Pattern Matching Algorithm for Network
Intrusion Detection Systems," 22nd International Conference on Advanced
Information Networking and Applications - Workshops (aina workshops 2008).
[11] C. R. Clark, "Scalable pattern matching for high speed networks," 12th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines, 2004.
[12] C. H. Harris, Quantitative Chemical Analysis, (4th ed.)Freeman, New York, 1995.
[13] D. A. Skoog, Principles of Instrumental Analysis, (3rd ed.)Saunders, New York
(1985)
[14] S. Health, Embedded systems design, (2nd ed.)Oxford ; Boston : Newnes, 2003.
[15] S. Klupsch and M. Ernst, "Real Time Image Processing based on Reconfigurable
Hardware Acceleration," in proceedings of Workshop Heterogeneous
Reconfigurable Systems on Chip, April 2002.
[16] P. Q. Cuong, "Heterogeneous hardware accelerator architecture for streaming
image processing," in Proceeding of International Conference on Advanced
Technologies for Communications (ATC), pp. 374-379, 2013.
[17] H. Schneiderman and T. Kanade, "A Statistical Model for 3D Object Detection
Applied to Faces and Cars," IEEE Conference on Computer Vision and Pattern
Recognition, June, 2000.
[18] D. M. Gavrila,"Multi-feature Hierarchical Template Matching Using Distance
Transforms," IEEE Int. Conf. on In Pattern Recognition, Brisbane, Vol. 1, pp. 439-
444, 1998.
[19] A. K. Alvi, M. Y. B. Azhar, M. Usman, S. Mumtaz, S. Rafiq, R. U. Rehman,
"Pakistan sign language recognition using statistical template matching,"
International Journal of Information Technology, vol. 1, no. 3, pp. 765-768, 2007.
[20] L. Yun, Z. Lifeng, and Z. Shujun, "A hand gesture recognition method based on
multi-feature fusion and template matching," Procedia Engineering, vol. 29, pp.
1678-1684, 2012.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *