帳號:guest(3.128.95.217)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘厚儒
作者(外文):Pan, Hou-Ru
論文名稱(中文):毫米波雙頻並行之收發機前端電路設計
論文名稱(外文):Design of Millimeter-Wave Concurrent Dual-Band Transceiver Front-End Circuits
指導教授(中文):劉怡君
指導教授(外文):Liu, Yi-Chun
口試委員(中文):徐碩鴻
林佑昇
口試委員(外文):Hsu, Shou-Hung
Lin, Yo-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061704
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:127
中文關鍵詞:雙頻並行功率放大器低雜訊放大器壓控震盪器毫米波90奈米CMOS匹配網路
外文關鍵詞:Concurrent dual-bandPower amplifierLow noise amplifierVoltage-controlled oscillatorMillimeter-wave90-nm CMOSMatching network
相關次數:
  • 推薦推薦:0
  • 點閱點閱:620
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著半導體產業的發展,電晶體也越做越小,帶來的是晶片面積縮小與耗能降低,而需要小尺寸晶片的產品如行動裝置與車用電子也蓬勃發展中,加上無線通訊的應用,使得電晶體的操作頻率越趨高頻,為了得到更寬的頻寬一方面能加速資料的傳輸,另一方面可以增加使用者數目。現今大部分的無線收發機電路仍以使用矽製程為主,因大多數的產品以低成本及低功耗為主要考量。
在未來手機會使用到的頻段以第五代通訊系統(5th Generation)與電機電子工程學會(IEEE)所制定的無線區域網路(wireless local area networks, WLAN)標準為主要應用,前者的頻率各國仍在研討中,目前可能會用到的頻率有28、38 GHz,而下一代的無線區域網路標準為802.11.ad,所使用的頻率是60 GHz,而38、60 GHz為此論文所研究的頻率。
本論文探討了雙頻並行的收發機前端子電路設計,並利用90奈米互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor, CMOS)製程實現。第一個設計為功率放大器,可同時操作於Ka與V頻帶,所能達到的飽和功率輸出分別為7.2與7.3 dBm,最大的功率附加效率分別為4.1與4.6%,而第二個設計為低雜訊放大器,同樣可同時操作於前述兩個頻帶,雜訊指數分別為5.6與6.2 dB,並有13.4和11 dB的線性增益,最後一個設計為壓控振盪器,一樣可同時操作該兩頻帶,該設計在1 MHz的相位雜訊為-99.8和-93.1 dBc/Hz,並有8%和9.5%的頻率調整範圍。
As the fast development of semiconductor industry, the transistor size is thinking that leads to smaller chip size and lower energy consumption. The mobile devices and automotive electronics that demand small size are very popular. The applications of wireless communications make transistor operate in higher frequency to get the wider bandwidth hence the data transfer can be faster and the number of users can be increased. Most of the wireless transceiver circuits use silicon process nowadays for its low cost and low power dissipation.
In the future, 5th generation communication systems and a new protocol of WLAN developed by IEEE will be the main application bands for mobile phones. The operation band in the former is still under discussion in each country where 28 GHz and 38 GHz are the candidate frequency bands. Next generation of WLAN is 802.11.ad that uses 60 GHz as operation frequency band. Thus, the frequencies of interest in this thesis are 38 GHz and 60 GHz.
The thesis discusses the design of concurrent dual-band transceiver front-end circuits implemented by TSMC 90-nm CMOS process. The first design is a power amplifier operating at Ka-band and V-band concurrently. Its saturation output power is 7.2 dBm and 7.3 dBm at two bands, respectively. The maximum power-added-efficiency (PAE) is 4.1% and 4.6% at two bands, respectively. The second design is a low noise amplifier operating at dual bands simultaneously with 5.6 dB and 6.2 dB noise figure where its linear gain is 13.4 dB and 11.1 dB, respectively. The last design is a voltage-controlled oscillator. It generates two non-harmonic output frequencies in the same power spectrum. In this design, the phase noise is -99.8 dBc/Hz and -93.1 dBc/Hz at 1 MHz with 8% and 9.5% tuning range in two bands.
摘要 i
ABSTRACT ii
Contents i
List of Figures v
List of Tables xi
Chapter 1 Introduction 1
1.1. Introduction to Millimeter-wave 1
1.2. Introduction to Multi-Band Systems 1
1.3. Compare Dual-Band and Concurrent Dual-Band 2
1.4. Structures of Concurrent Dual-Band in Amplifiers 3
1.4.1 Broadband Amplifier with a Notch Filter 3
1.4.2 Amplifier with Dual-band Matching 4
1.5. Structures of Concurrent Dual-Band in Oscillators 4
1.6. The Research Topic and Motivation in This Thesis 5
Chapter 2 Devices in TSMC 90-nm CMOS Process 6
2.1. Passive Devices 6
2.1.1 Inductors 6
2.1.2 Capacitors 10
2.1.2.1 MOM Capacitors 10
2.1.2.2 MIM Capacitors 12
2.2. Active Devices 13
Chapter 3 A 38/60 GHz Concurrent Dual-Band Power Amplifier 17
3.1. Introduction of Power Amplifiers 17
3.2. Specifications of Power Amplifiers 19
3.2.1 Specifications of Small Signal Operation 19
3.2.1.1 S-Parameters 19
3.2.1.2 Stability 21
3.2.2 Specifications of Large Signal Operation 23
3.2.2.1 Output Power 23
3.2.2.2 Efficiency 24
3.2.2.3 Linearity 25
3.3. Classification of Power Amplifiers 27
3.4. Load Line Theory 31
3.5. Dual-Band Matching Network 33
3.5.1 Network A 33
3.5.2 Network B 36
3.5.3 Network C 39
3.6. The Proposed Power Amplifier 41
3.6.1 Paper Survey 41
3.6.2 Circuit Design 42
3.6.2.1 Sizing 42
3.6.2.2 Matching Network 44
3.6.2.3 Post-Layout Simulation 51
3.6.3 Simulation and Measurement Results 52
3.6.4 Conclusions 64
Chapter 4 A 38/60 GHz Concurrent Dual-Band Low Noise Amplifier 69
4.1. Introduction of Low Noise Amplifiers 69
4.2. Specifications of Low Noise Amplifiers 69
4.2.1 Noise Figure 69
4.2.2 Stability 74
4.3. The Proposed Low Noise Amplifier 75
4.3.1 Paper Survey 75
4.3.2 Circuit Design 75
4.3.2.1 Sizing 76
4.3.2.2 Matching Network 80
4.3.2.3 Post-Layout Simulation 83
4.3.3 Simulation and Measurement Results 84
4.3.4 Conclusions 95
Chapter 5 A 38/60 GHz Dual-Band Voltage-Controlled Oscillator 97
5.1. Introduction of Voltage-Controlled Oscillators 97
5.2. Specifications of Voltage-Controlled Oscillators 97
5.2.1 Phase Noise 97
5.2.2 Tuning Range 103
5.3. The Proposed Voltage-Controlled Oscillator 105
5.3.1 Paper Survey 105
5.3.2 Circuit Design 106
5.3.2.1 Structures Selection 106
5.3.2.2 Sizing 107
5.3.2.3 Coupled Inductors 109
5.3.2.4 Post-Layout Simulation 111
5.3.3 Simulation and Measurement Results 112
5.3.4 Conclusions 119
Chapter 6 Conclusions and Future Works 121
Reference 124
[1] J. Lee and C. Nguyen, "A concurrent dual-band low-noise amplifier for K- and Ka-band applications in SiGe BiCMOS technology," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, 2013, pp. 258-260.
[2] K. Kim and C. Nguyen, "A Concurrent Ku/K/Ka Tri-Band Distributed Power Amplifier With Negative-Resistance Active Notch Using SiGe BiCMOS Process," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 1, pp. 125-136, Jan. 2014.
[3] J. Lee and C. Nguyen, "A Concurrent Tri-Band Low-Noise Amplifier With a Novel Tri-Band Load Resonator Employing Feedback Notches," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4195-4208, Dec. 2013.
[4] K. A. Hsieh, H. S. Wu, K. H. Tsai and C. K. Clive Tzuang, "A Dual-Band 10/24-GHz Amplifier Design Incorporating Dual-Frequency Complex Load Matching," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1649-1657, June 2012.
[5] C. Huynh and C. Nguyen, "New Technique for Synthesizing Concurrent Dual-Band Impedance-Matching Filtering Networks and 0.18-μm SiGe BiCMOS 25.5/37-GHz Concurrent Dual-Band Power Amplifier," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 11, pp. 3927-3939, Nov. 2013.
[6] K. Kunihiro et al., "A diplexer-matching dual-band power amplifier LTCC module for IEEE 802.11a/b/g wireless LANs," 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers, 2004, pp. 303-306.
[7] X. Li, W. Chen, Z. Zhang, Z. Feng, X. Tang and K. Mouthaan, "A concurrent dual-band Doherty power amplifier," 2010 Asia-Pacific Microwave Conference, Yokohama, 2010, pp. 654-657.
[8] P. Y. Wu and J. F. Buckwalter, "A Q-Band/W-Band Dual-Band Power Amplifier in 0.12 µm SiGe BiCMOS Process," 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Monterey, CA, 2013, pp. 1-4.
[9] Kaizhe Guo, Peng Huang and Kai Kang, "A 60-GHz 1.2 V 21 dBm power amplifier with a fully symmetrical 8-way transformer power combiner in 90 nm CMOS," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, 2014, pp. 1-3.
[10] Trung-Kien Nguyen, Chung-Hwan Kim, Gook-Ju Ihm, Moon-Su Yang and Sang-Gug Lee, "CMOS low-noise amplifier design optimization techniques," in IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 5, pp. 1433-1442, May 2004.
[11] S. Sattar and T. Z. A. Zulkifli, "A 2.4/5.2-GHz Concurrent Dual-Band CMOS Low Noise Amplifier," in IEEE Access, vol. 5, pp. 21148-21156, 2017.
[12] Y. J. Hong, S. F. Wang, P. T. Chen, Y. S. Hwang and J. J. Chen, "A concurrent dual-band 2.4/5.2 GHz low-noise amplifier using gain enhanced techniques," 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), Taipei, 2015, pp. 231-234.
[13] M. Gamal, M. El-Nozahi and H. El-Hennawy, "Concurrent dual-band LNA for automotive application," 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO, 2015, pp. 1-4.
[14] M. S. Alam, A. Mukerjee and M. Schroter, "Performance investigation of dual band millimetre wave SiGe low noise amplifier (LNA)," 2015 IEEE MTT-S International Microwave and RF Conference (IMaRC), Hyderabad, 2015, pp. 258-261.
[15] L. W. Chu, C. Y. Lin and M. D. Ker, "Design of Dual-Band ESD Protection for 24-/60-GHz Millimeter-Wave Circuits," in IEEE Transactions on Device and Materials Reliability, vol. 13, no. 1, pp. 110-118, March 2013.
[16] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," in IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb 1998.
[17] D. B. Leeson, "A simple model of feedback oscillator noise spectrum," in Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
[18] H. l. Kao et al., "A 2.4/5 GHz dual-band voltage-controlled oscillator using switched resonator," 2013 International Conference on Computational Problem-Solving (ICCP), Jiuzhai, 2013, pp. 20-22.
[19] X. Yu, A. El-Gouhary and N. M. Neihart, "A Transformer-Based Dual-Coupled Triple-Mode CMOS LC-VCO," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 9, pp. 2059-2070, Sept. 2014.
[20] J. y. Lee, S. h. Lee, H. c. Bae and S. h. Kim, "A Concurrent Dual-Band VCO with Dual Resonance in Single Resonator," 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Long Beach, CA, 2007, pp. 135-138.
[21] Y. C. Chiang and Y. H. Chang, "A 60 GHz CMOS VCO Using a Fourth-Order Resonator," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 9, pp. 609-611, Sept. 2015.
[22] A. H. T. Yu et al., "A Dual-Band Millimeter-Wave CMOS Oscillator With Left-Handed Resonator," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1401-1409, May 2010.
[23] V. Jain, F. Tzeng, L. Zhou and P. Heydari, "A Single-Chip Dual-Band 22–29-GHz/77–81-GHz BiCMOS Transceiver for Automotive Radars," in IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3469-3485, Dec. 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *