帳號:guest(3.138.116.1)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝承光
作者(外文):Hsieh, Cheng-Kuang
論文名稱(中文):分切合整數位控制高功率 併網型轉換器研製
論文名稱(外文):Design and Implementation of High Power D-Σ Digital Controlled Grid-Connected Converter
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):張育銘
鄭博泰
張淵智
口試委員(外文):Chang, Yu-Ming
Cheng, Po-Tai
Chang, Yuan-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061614
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:三相四線式換流器分切合整數位控制整流充電併網實虛功補償
外文關鍵詞:three-phase four-wire converterD-Σ digital controlgrid connectionactive/reactive power compensation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:550
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
本研究為設計與製作一部高功率併網型換流器,電力級採用三相四線半橋式電路架構,並以Renesas RX62T群組為控制中心,可有實功輸出、整流充電與特定功率因數輸出等模式。在實功輸出模式下,可將電能從直流鏈輸出至電網;當直流側電壓跌出工作範圍時,換流器能夠快速而平滑地轉為整流模式,從電網買電匯入直流側;依特定功率因數輸出模式,則是依照電力公司指令輸出實虛功併入電網,從而達到補償電網電壓與頻率的效果。另外,為實際驗證換流器功能,將以兩部換流器串聯已進行循環功能測試。
在換流器控制方面,採用分切合整數位控制法,與傳統abc-dq座標軸轉換控制相比,可簡化受控體與控制法則的推導過程,並藉由控制器設計以避免直流鏈電壓、開關切換頻率以及電感值變化對受控體的影響。當把電感值變化加入控制法推導時,可得出開關責任比率計算公式與電流變化量的直接關係,能夠適應電感值隨電流增大而衰減的情境,減少輸出波形失真;因此可以選擇體型小的型號並降低成本。以分切合整數位控制搭配正弦脈寬調變(Sinusoidal Pulse Width Modulation, SPWM),可以將三相換流器等效成三個單相換流器,將各自開關責任比率分開計算以降低複雜度。為驗證分切合整數位控制法可應用於換流器,本研究將附上模擬與實測結果。
本研究之主要貢獻為:設計一應用分切合整數位控制法之併網型高功率換流器,可於直流鏈電壓與電網之間傳輸電能;另外則是以單相循環實測,探討換流器的運轉情況。

關鍵字:三相四線式換流器、分切合整數位控制、整流充電、併網、實虛功補償
This thesis presents design and implementation of a high power grid-connected converter. A three-phase four-wire half-bridge circuit structure is adopted for high power transferring and the microcontroller Renesas RX62T is chosen as control center of the system. The operational mode of the converter includes real power output mode, rectification mode and specific power factor output mode. In the real power output mode, power can be transferred from dc-bus into grid. If dc-bus voltage drops below lower boundary, system will be smoothly and quickly changed to operate under rectification mode to buy power from ac grid to charge dc bus. In the specific power factor output mode, converter is able to adjust the output of active power and reactive power for grid compensation based on utility company command. In order to verify the functions of converter, two converters have been built to circulate power as a system.
With regard to the control of the converter, this search adopts D-Σ digital control. Compared to conventional abc to qd frame transformation, control law derivation can be simplified with D-Σ digital control. The controller of D-Σ digital control is designed to avoid influence caused by variations of dc bus voltage, switching frequency, and decay of inductance. As the inductance variation being taken into consideration, the core size can be reduced significantly. SPWM combined with D-Σ digital control can divide a three-phase converter into three single-phase converters, and the duty-ratio can be determined separately to reduce complexity of control. Finally, the feasibility of the converter system is verified with simulated results and experimental results.
This major contributions of this paper is: this research adopts D-Σ digital control to build a high power grid-connected converter, which transfers power between dc bus and grid, and test the converter under single phase system to explore the operational situations of the converter.

Keywords: three-phase four-wire converter, D-Σ digital control, grid connection, active/reactive power compensation.
誌謝 i
摘要 ii
Abstract iii
總目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-2-1 換流器架構 2
1-2-2 換流器控制方法 5
1-3 論文大綱 8
第二章 系統架構與分切合整數位控制法 10
2-1 系統架構 10
2-2 分切合整數位控制法 11
2-2-1 受控體 11
2-2-2 控制法則 16
2-2-3 電流型控制 17
第三章 系統周邊電路 19
3-1 元件驅動輔助電源 19
3-2 開關驅動輔助電源 20
3-3 上下臂開關隔離驅動電路 22
3-4 輔助電源偵錯電路 23
3-5 電壓箝位電路 23
3-6 精密全波整流電路 24
3-7 交流電壓回授電路 25
3-8 電網電壓偵測電路 26
3-9 電感電流回授電路 27
3-10 直流鏈電壓回授電路 28
3-11 直流鏈預充電路 28
3-12 電網隔離電路 29
3-13 系統緊急關閉電路 30
第四章 韌體規劃 31
4-1 RX62T群組微控制器簡介 31
4-2 主程式流程規劃 34
4-3 A/D中斷副程式流程規劃 35
第五章 實驗結果 38
5-1 換流器規格與元件 38
5-2 元件選用與設計 39
5-2-1 功率元件選用 39
5-2-2 濾波電感值設計 40
5-2-3 濾波電容值設計 40
5-2-4 直流鏈電容設計 41
5-2-5 電磁接觸器選擇 41
5-3 實務考量 42
5-3-1 電感值變化 42
5-3-2 A/D取樣與PWM輸出設定 44
5-3-3 開關死區補償 45
5-3-4 開關驅動電源獨立與驅動電壓設計 47
5-3-5 RG阻值設計 48
5-3-6 回授電路濾波電容設計 49
5-3-7 緩衝電容電路 49
5-4 換流器模擬系統建模 50
5-5 電流型控制系統模擬與實測波形 51
5-5-1 純實功輸出 52
5-5-2 整流充電 54
5-5-3 純虛功補償 56
5-5-4 第一象限 57
5-5-5 第二象限 58
5-5-6 第三象限 59
5-5-7 第四象限 60
5-5-8 負載變動測試 61
5-6 總諧波失真率 62
第六章 結論與未來研究方向 63
6-1 結論 63
6-2 未來研究方向 64
參考文獻 65
[1] W. Tang and Y. J. A. Zhang, “Optimal Battery Energy Storage System Control in Microgrid with Renewable Energy Generation,” IEEE International Conference on Smart Grid Communications, pp. 846-851, Nov. 2015.
[2] Coppez, S. Chowdhury, and S. P. Chowdhury, “The Importance of Energy Storage in Renewable Power Generation: A Review,” Universities Power Engineering Conference, pp. 1-5, Sep. 2010.
[3] B. Jintanasombat and S. Premrudeepreechacharn, “Optimal Analysis of Battery Energy Storage for Reduction of Power Fluctuation from PV System in Mae Hong Son Province,” International Youth Conference, pp. 1-6, May. 2015.
[4] M. V M. Kumar and M. K. Mishra, “A Three-Leg Inverter Based DSTATCOM Topology for Compensating Unbalanced and Nonlinear Loads,” IEEE International Conference on Power Electronics, pp. 1-6, Dec. 2014.
[5] X. Guo, R. He, J. Jian, Z. Lu, X. Sun, and J. M. Guerrero, “Leakage Current Elimination of Four-Leg Inverter for Transformerless Three-Phase PV System,” IEEE Trans. Power Electronics, vol. 31, no. 3, pp. 1841-1846, Mar. 2016.
[6] 李俊毅,高功率三相中性點箝位式轉換器研製,國立中正大學電機工程研究所碩士論文,2014年7月。
[7] K. H. Ang, G. Chong, and Y. Li, “PID Control System Analysis, Design, and Technology,” IEEE Trans. Control Systems Technology, vol. 13, no. 4, pp. 559-576, Jul. 2005.
[8] J. D. Li, S. Z. Wei, W. Qiong, and X. Peng, “A Switching-Inverter Power Controller Based on Fuzzy Adaptive PID” IEEE International Forum on Strategic Technology, pp. 695-699, Aug. 2011.
[9] D. Chen, J. Zhang, and Z. Qian, “An Improved Repetitive Control Scheme for Grid-Connected Inverter with Frequency-Adaptive Capability,” IEEE Trans. Industrial Electronics, vol. 60, no. 2, pp. 814-823, Feb. 2013.
[10] T.-Y. Doh and J. R. Ryoo, “Robust Repetitive Controller Design and Its Application on the Track-Following Control System in Optical Disk Drives,” IEEE Conference on Decision and Control and European Control Conference, pp. 1644-1649, Dec. 2011.
[11] S. Saggini, W. Stefanutti, E. Tedeschi, and P. Mattavelli, “Digital Deadbeat Control Tuning for DC-DC Converters Using Error Correlation,” IEEE Trans. Power Electronics, vol. 22, no. 4, pp. 1556-1570, Jul. 2007.
[12] Han, Y. Xia, and W. Min, “Study on the Three-Phase PV Grid-Connected Inverter Based on Deadbeat Control,” IEEE Conference on Power Engineering and Automation Conference, pp. 1-4, Sep. 2012.
[13] R. Yu and J. S. Wei, “Fuzzy Control of a Bi-Directional Inverter with Nonlinear Inductance for DC Microgrids,” IEEE International Conference on Fuzzy Systems, pp. 1941-1945, Jun. 2011.
[14] S. A. Krishna and L. Abraham, “Boost Converter Based Power Factor Correction for Single Phase Rectifier Using Fuzzy Logic Control,” IEEE International Conference on Computational Systems and Communications, pp. 122-126, Dec. 2014.
[15] UC3842/3/4/5 Datasheet, 2005
[16] TNY278-280 Datasheet, 2006
[17] 74HC244 Datasheet, rev. 4, 2012
[18] HFBR-0500Z Series Versatile Link The Versatile Fiber Optic Connection Datasheet, Sep. 2014
[19] TLP358 Datasheet, rev. 3, 2015
[20] BSH-1000ICV5M Datasheet
[21] Renesas Electronics, “RX62T/62G Group Datasheet,’’ Jan. 2014
[22] RWF series Datasheet, May. 2006
[23] FF900R12IP4 Datasheet, rev. 3, 2009
[24] Chang Sung Corporation (CSC), “Magnetic Powder Cores,” www.changsung.com, ver. 13
[25] IEEE Std 519-2014, “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” IEEE, pp. 1-29, Jun. 2014
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *