帳號:guest(18.218.62.194)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):白宇晉
作者(外文):Pai, Yu-Chin
論文名稱(中文):對於非線性隨機跳躍擴散系統的L_∞-gain模糊觀測器控制設計
論文名稱(外文):L_{∞}-gain Fuzzy Observer-based Regulation Control Design for Nonlinear Stochastic Jump Diffusion Systems
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):林志民
李柏坤
徐勝均
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061610
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:25
中文關鍵詞:L_∞-gain 控制非線性隨機系統T-S 模糊模型最佳化控制線性矩陣不等式
外文關鍵詞:L_∞-gain controlnonlinear stochastic systemT-S fuzzy modeloptimal controllinear matrix inequality
相關次數:
  • 推薦推薦:0
  • 點閱點閱:352
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
到目前為止,具有跳躍擴散雜訊的非線性動力系統的非線性隨機L_∞-gain控制問題還沒有被傳統的控制方法所解決。本文提出了一種L_∞-gain方法來處理非線性隨機控制問題。首先採用Takagi-Sugeno(T-S)模糊模型對非線性動力系統進行線性近似。接下來,基於T-S模糊模型,設計了一種基於模糊觀測器的控制器,在一些線性矩陣不等式(LMI)限制條件下,使系統的L_∞-gain性能的上界最小化。另外,我們提出了一種LMI- constrained進化演算法(EA)來有效地找到L_∞-gain性能的上界。因此,將非線性隨機L_∞-gain控制問題轉化為一個求解LMI的控制問題,可以通過Matlab程式簡單地解決。我們所提出的方法充分抑制了由於突然跳躍引起的狀態峰值,而且把L_∞-gain控制問題從非隨機系統延伸到隨機系統。最後,通過模擬驗證了本文的有效性。
To date, nonlinear stochastic L_∞-gain control problems have not been solved by conventional control methods for nonlinear dynamic systems with jump diffusion noise. In this paper, an L_∞-gain method is proposed to deal with the nonlinear stochastic control problem. First, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear dynamic system. Next, based on the fuzzy model, a fuzzy observer-based controller is developed to minimize the upper bound of the system's L_∞-gain performance under some linear matrix inequality (LMI) constraints. In addition, we propose an LMI-constrained evolution algorithm (EA) to efficiently find the upper bound of L_∞-gain performance. Therefore, the nonlinear stochastic L_∞-gain control problem is transformed to an LMI-based control problem which can be easily solved by Matlab toolbox. The proposed method, which sufficiently attenuates the peak of the state due to the sudden jump, extends the L_∞-gain control problems from non-stochastic systems to stochastic systems. Finally, a simulation is given to validate the effectiveness of this paper.
摘要--------------------------------------------------------------i
Abstract--------------------------------------------------------ii
誌謝------------------------------------------------------------iii
Contents--------------------------------------------------------iv
I INTRODUCTION------------------------------------------------1
II PROBLEM FORMULATION----------------------------------------2
III L_∞-gain FUZZY OBSERVER-BASED CONTROL DESIGN FOR NONLINEAR STOCHASTIC SYSTEMS-----------------------------------------------7
IV L_∞-gain FUZZY CONTROL DESIGN VIA LMI-CONSTRAINED EVOLUTION ALGORITHM-------------------------------------------------------15
V SIMULATION-------------------------------------------------19
VI CONCLUSIONS-----------------------------------------------24
REFERENCES------------------------------------------------------25
1.M. Vidydyasagar, "Optimal rejection of persistent bounded disturbances," IEEE Trans. Autom. Control, vol. AC-31, no. 6, pp. 527-534, Jun. 1986
2.M. A. Dahleh and J. B. Pearson, "L₁-optimal compensators for continuous-time systems," IEEE Trans. Autom. Control, vol. AC-32, no. 10, pp. 889-895. Oct. 1987.
3.A. A. Stoorvogel, "Nonlinear L₁-optimal controllers for linear Systems," IEEE Trans. Autom. Control, vol. 40, no. 4. pp. 694-696. Apr. 1995.
4.M. A. Dahleh and J. B. Pearson, "l₁-optimal feedback controllers for MIMO discrete-time systems," IEEE Trans. Autom. Control, vol. AC-32, no. 4, pp. 314--322, Apr. 1987.
5.J. S. Shamma, "Nonlinear state-feedback for l₁ optimal control," Syst. Control Lett., vol. 21, pp. 265--270, 1993.
6.W. M. Lu, "Rejection of persistent L_{∞}-bounded disturbances for nonlinear systems," IEEE Trans. Autom. Control, vol. 43, no. 12, pp. 1692--1702, Dec. 1998.
7.R. J. P. de Figueiredo and G. Chen, "Optimal disturbance rejection for nonlinear control systems," IEEE Trans. Autom. Control, vol. 34, no. 12, pp. 1242--1248, Dec. 1989.
8.C. S. Tseng, "Robust fuzzy filter design for nonlinear systems with persistent bounded disturbances," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 36, no. 4, pp. 940--945, Aug. 2006.
9.C. S. Tseng and B. S. Chen, "L_{∞}-gain fuzzy control for nonlinear dynamic systems with persistent bounded disturbances," Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Conference on.
10.C. S. Tseng and B. S. Chen, "Robust fuzzy observer-based fuzzy control design for nonlinear discrete-time systems with persistent bounded disturbances," IEEE Trans. Fuzzy Syst., vol. 17, no. 3, pp. 711--723, Jun. 2009.
11.K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, John Wiley & Sons. Inc. 2001.
12.S. Boyd, L. EI Ghaoui. E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia 1994.
13.P. Gahinet. A. Nemirovski. A.Laub and M. Chilali, The LMI Control Toolbox. Natick, MA: The Mathworks, Inc. 1995.
14.B. K. Osendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, 2nd. Berlin, Germany: Springer, 2007.
15.F. B. Hanson, Applied Stochastic Processes and Control for Jump Diffusions: Modeling, Analysis, and Computation. Philadelphia, PA, USA: SIAM, 2007.
16.C. F. Wu, B. S. Chen and W. Zhang, "Multiobjective Investment Policy for a Nonlinear Stochastic Financial System: A Fuzzy Approach" IEEE Trans. Fuzzy Syst., vol. 25, no. 2, pp. 460--474, Apr. 2017.
17.B. S. Chen and W. Zhang, "Stochastic H₂/H_{∞} control with state-dependent noise," IEEE Trans. Autom. Control, vol. 49, no. 1, pp. 45-57, Jan. 2004.
18.J. S. R. Jang, C.T. Sun and E. Mizutani, Neuro-Fuzzy and Soft Computing. Upper Saddle River, NJ: Prentice--Hall, 1997.
19.T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 1, pp. 116--132, Jan./Feb. 1985.
20.C. S. Tseng, B. S. Chen and H. J. Uang, "Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model," IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 381--392, Jun. 2001.
21.B. S. Chen, C. S. Tseng and H. J. Uang, "Robustness design of nonlinear dynamic systems via fuzzy linear control," IEEE Trans. Fuzzy Syst., vol. 7, no. 5, pp. 571--585, Oct. 1999.
22.B. S. Chen and Y. M. Cheng, "A structure-specified H_{∞} optimal control design for practical applications: a genetic approach," IEEE Trans. Control Syst Tech., vol. 6, no. 6, pp. 707--718, Nov. 1998.
23.D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, New York, Addison-Wesley, 1989.
24.Richard L. Wheeden and Antoni Zygmund, Measure and Integral: An Introduction to Real Analysis, Second Edition, 2015.
25.G. Chen, G. Chen and S. H. Hsu, Linear Stochastic Control Systems. Boca Raton, FL, USA: CRC Press, 1995.
26.R. Krishnan, Electric Motor Drives Modeling, Analysis, and Control, NJ: Prentice--Hall, 2001.
27.Ned Mohan, Electric Drives: An Integrative Approach, MNPERE, 2003.
28.X. Niu, C. Zhang and H. Li, "Active disturbance attenuation control for permanent magnet synchronous motor via feedback domination and disturbance observer," IET Control Theory Appl., vol. 11, no. 6, pp. 807--815, 2017.
29.P. Pillay and R. Krishnan, "Modeling, simulation, and analysis of permanent magnet motor drives -- I: The permanent-magnet synchronous motor drive," IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265--273, 1989.
30.H. Liu and S. Li, "Speed control for pmsm servo system using predictive functional control and extended state observer, " IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1171--1183, 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *