帳號:guest(3.15.192.196)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊子賢
作者(外文):Yang, Tzu-Hsien.
論文名稱(中文):應用於高速且可靠讀取28奈米32kb自旋力矩轉移-磁阻式隨機存取記憶體巨集之連續紀錄並增強電壓感測放大器
論文名稱(外文):A Fast and Reliable Read 28nm 32kb STT-MRAM macro using Continuous-Recording-and-Enhancement Voltage-Mode Sense Amplifier
指導教授(中文):張孟凡
指導教授(外文):Chang, Meng-Fan
口試委員(中文):洪浩喬
鄭桂忠
口試委員(外文):Hong, Hao-Chiao
Tang, Kea-Tiong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061588
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:66
中文關鍵詞:自旋力矩轉移-磁阻式隨機存取記憶體感測放大器預放大器非揮發性記憶體製程飄移容忍高速讀取
外文關鍵詞:STT-MRAMSense-amplifierPre-amplifierNVMProcess-variation-toleranceHigh-speed-read
相關次數:
  • 推薦推薦:0
  • 點閱點閱:965
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
自旋力矩轉移-磁阻式隨機存取記憶體(STT-MRAM) 是目前新興之非揮發性記憶體,因為其高速存取、高耐久性、非揮發性三大優勢,被認為是目前極具發展潛力之新興記憶體。在目前記憶體階層中,儲存裝置以快閃記憶體為主,不過因其低存取速度,及低耐久性,使之與主記憶體之動態存取記憶體存在效能落差,將會造成記憶體系統之效能瓶頸。而新興之記憶體概念”儲存級記憶體(SCM)”作為儲存裝置及主記憶體間溝通之橋梁,自旋力矩轉移-磁阻式隨機存取記憶體將在此新領域中扮演重要之角色。
在次碩士論文中將探討自旋力矩轉移-磁阻式隨機存取記憶體在讀取上會面臨之挑戰,並提出一電壓感測放大器電路解決以下問題,以提升讀取效能:
1. 自旋力矩轉移-磁阻式隨機存取記憶體之穿隧式磁阻比例(TMR-Ratio)小及製程飄移現象,造成資料0與資料1之阻值差異性小,造成讀取良率低落。
2. 自旋力矩轉移-磁阻式隨機存取記憶體元件阻值偏低,造成位元線放電到地速度過快,感測範圍無法拉開至足夠電壓差,造成讀取良率低落。
3. 過高讀取電壓容易造成讀取干擾(Read disturb)現象,而傳統方案在低讀取電壓下讀取良率低落。
因此,我們提出具製程變異容忍及預放大感測裕度之連續紀錄並增強電壓感測放大器 (CRE-VSA)。在台積電28奈米製程模擬分析下,我們提出的CRE-VSA的相較於傳統電壓感測放大器可容忍6.3倍以下之TMR-比例,並可容忍2倍以下之讀取電壓,並相對傳統電流及傳統電壓讀取在相同讀取良率下減少80%及34%的能量消耗,並可放大5.85倍感測裕度及在不同位元線長短下增進1.5至1.86倍讀取速度。
我們與台積電合作並以28奈米製程實作32Kb STT-MRAM記憶體晶片,在正常操作電壓0.9V下,量測提出之電路讀取速度為1.3 ns而傳統電路讀取速度為1.86ns,增進1.43倍讀取速度。而提出之電路最低讀取電壓為140mV而傳統放大器為280mV,可容忍2倍更低之讀取電壓。最後量測提出電路之電壓偏移為15mV而傳統感測放大器為65mV,可以達到4.3倍感測裕度之放大。
Spin Torque Transfer- Magnetoresistive Random Access Memory (STT-MRAM) is a promising emerging memory candidate for several reasons, high speed accesses, high endurance and non-volatility. In current memory system hierarchy. The performance gap is occurring between main memory (DRAM) and storage (flash memory) due to slow access speed and low endurance of flash memory. The performance gap will cause memory system performance bottleneck. A new memory concept, storage class memory (SCM), which as the bridge between storage memory and main memory. STT-MRAM will play an important role in this new area.
In this paper, we discuss the issue of STT-MRAM in reading, and proposed a voltage mode sense amplifier to solve the following problems to improve the read performance:
1. The low TMR-ratio of STT-MRAM cell and process variation effect, resulting in small resistance difference between data-0 and data-1. Therefore, leading to low sensing yield.
2. The low resistance value of STT-MRAM cell will cause the bit line discharge to ground too rapid to generate enough voltage difference between BL and BLB, resulting in low sensing yield.
3. High read voltage causes read disturb issue. However the conventional scheme suffers low sensing yield at low read voltage operation.
Therefore, we propose a Continuous-Recording-and-Enhancement Voltage-Mode Sense Amplifier (CRE-VSA) with the Process Variation Toleration and Pre Amplify Sensing Margin Scheme to solve the above reading issue. Under tsmc 28 nm technology analysis, our proposed CRE-VSA achieves 6.3x larger tolerance TMR ratio at a given R¬P, and achieves 2x lower read voltage than conventional scheme. Moreover, CRE-VSA can achieve 80% and 34% lower read energy than typical current-mode and CNV-VSA at the same sensing yield. In addition, CRE-VSA achieves 5.85x sensing margin enhancement and CRE-VSA achieve 1.5x~1.86 faster read access time (TAC) than conventional VSA at different BL length.
We cooperate with tsmc and implement our proposed sensing scheme at tsmc 32kb 28nm STT-MRAM macro. At typical VDD=0.9V, measured access time of CRE-VSA is 1.3ns and conventional VSA is 1.86ns, proposed scheme can improve 1.43x read access time. Measured minimum read voltage of CRE-VSA is 140mV and conventional VSA is 280mV, this scheme can tolerate 2x lower read voltage. Finally, the measured offset of CRE-VSA is 15mV and conventional is 65mV, this work achieves 4.3x sensing margin enhancement.
致謝 i
摘要 ii
Abstract iv
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 The Role of Memory in SoC products 1
1.2 Memory Hierarchy 2
1.3 Challenges of Flash Memory 4
1.4 Emerging Non-Volatile Memories 7
Chapter 2 Characteristic of STT-MRAM 11
2.1 Introduction of MRAM 11
2.2 Read and Write Operations 13
2.3 Recent Development 16
Chapter 3 Design Challenges of STT-MRAM Read 19
3.1 Structure and Operations of Conventional Sensing Schemes 19
3.2 Voltage and Current Type Sense amplifier Comparison for STT-MRAM 21
3.3 Design Challenges 23
3.3.1 Threshold Voltage in Process 23
3.3.2 Issues of STT-MRAM 24
3.4 Previous Arts 25
Chapter 4 Proposed Circuits Schemes and Analysis 29
4.1 Proposed Sense Amplifier 29
4.1.1 Motivation and Concept of Proposed Sense Amplifier 30
4.1.2 Structure of Proposed Sense Amplifier 33
4.1.3 Operations of Proposed CRE-VSA 34
4.2 Analysis and Comparison 38
4.2.1 Efficiency of Margin Enhancement 38
4.2.2 Tolerance of low TMRMIN and Read Voltage 41
4.2.3 Read Energy Consumption Reduction 43
4.2.4 Capacitor analysis 44
4.2.5 Access time (TAC) Improvement 46
Chapter 5 Measurement Results and Conclusion 47
5.1 STT-MRAM Macro 47
5.2 Design for Testchip 49
5.3 Measurement results 51
5.4 Conclusions and Future Work 57
Reference 60
[1] Kiyoo Itoh, Takayasu Sakurai, “VLSI Memory Chip Design”, Springer-Verlag, NY, pp. 1-46, 2001.
[2] M. Bohr, "The new era of scaling in an SoC world," 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2009, pp. 23-28.
[3] F. Menichelli and M. Olivieri, "Static Minimization of Total Energy Consumption in Memory Subsystem for Scratchpad-Based Systems-on-Chips," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 2, pp. 161-171, Feb. 2009.
[4] D. Smith, J. Zeiter, T. Bowman, J. Rahm, B. Kertis, A. Hall, S. Natan, L. Sanderson, R. Tromp, J. Tsang, “A 3.6ns 1Kb ECL I/O BiCMOS U.V. EPROM,” IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1987-1990, May 1990.
[5] C. Kuo et al., "A 512-kb flash EEPROM embedded in a 32-b microcontroller," in IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp. 574-582, Apr 1992.
[6] S. H. Kulkarni, Z. Chen, J. He, L. Jiang, M. B. Pedersen and K. Zhang, "A 4 kb Metal-Fuse OTP-ROM Macro Featuring a 2 V Programmable 1.37 $ mu$ m$ ^{2} $ 1T1R Bit Cell in 32 nm High-k Metal-Gate CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 863-868, April 2010.
[7] Y. H. Tsai et al., "45nm Gateless Anti-Fuse Cell with CMOS Fully Compatible Process," 2007 IEEE International Electron Devices Meeting, Washington, DC, 2007, pp. 95-98.
[8] Webfeet Inc., “Semiconductor industry outlook,” Non-Volatile Memory Conference, Santa Clara, CA., 2002
[9] Sang Lyul Min and Eyee Hyun Nam, "Current trends in flash memory technology," Asia and South Pacific Conference on Design Automation, 2006., Yokohama, 2006
[10] F. Masuoka, M. Momodomi, Y. Iwata and R. Shirota, "New ultra high density EPROM and flash EEPROM with NAND structure cell," 1987 International Electron Devices Meeting, 1987, pp. 552-555.
[11] A. Bergemont, H. Haggag, L. Anderson, E. Shacham and G. Wolstenholme, "NOR virtual ground (NVG)-a new scaling concept for very high density flash EEPROM and its implementation in a 0.5 um process," Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 1993, pp. 15-18.
[12] R. F. Freitas and W. W. Wilcke, “Storage-class memory: The next storage system
technology,” IBM Journal of Research and Development, vol. 52, no. 4-5, pp. 439-447,July 2008.
[13] R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, "Introduction to Flash Memory," Proceeding of the IEEE, vol. 91, Issue 4, pp. 489-502, April 2003.
[14] Y. Koh, “NAND Flash Scaling beyond 20nm,” IEEE Internstional Memory Workshop, pp. 1-3, May 2009.
[15] K. Prall, “Scaling Non-Volatile Memory Below 30nm,” IEEE Non-Volatile Semiconductor Memory Workshop, pp. 5-10, Aug. 2007.
[16] S. Lee, "Scaling Challenges in NAND Flash Device toward 10nm Technology," IEEE International Memory Workshop, pp. 1-4, May 2012.
[17] C. Villa et al., "A 125 MHz burst-mode flexible read-while-write 256 Mbit 2b/c 1.8V NOR flash memory," ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005., San Francisco, CA, 2005, pp. 52-584 Vol. 1.
[18] C. Deml, M. Jankowski and C. Thalmaier, "A 0.13μm 2.125MB 23.5ns Embedded Flash with 2GB/s Read Throughput for Automotive Microcontrollers," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 2007, pp. 478-617.
[19] M. Sako et al., "7.1 A low-power 64Gb MLC NAND-flash memory in 15nm CMOS technology," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
[20] C. H. Hung et al., "Layer-Aware Program-and-Read Schemes for 3D Stackable Vertical-Gate BE-SONOS NAND Flash Against Cross-Layer Process Variations," in IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1491-1501, June 2015.
[21] D. Kang et al., "256Gb 3b/cell V-NAND flash memory with 48 stacked WL layers," IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 130-131, Feb. 2016.
[22] H. Noguchi et al., "7.5 A 3.3ns-access-time 71.2μW/MHz 1Mb embedded STT-MRAM using physically eliminated read-disturb scheme and normally-off memory architecture," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, 2015, pp. 1-3.
[23] H. Noguchi et al., "4Mb STT-MRAM-based cache with memory-access-aware power optimization and write-verify-write / read-modify-write scheme," IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 132-133, Feb. 2016.
[24] G. De Sandre et al., "A 90nm 4Mb embedded phase-change memory with 1.2V 12ns read access time and 1MB/s write throughput," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, 2010, pp. 268-269.
[25] D. Takashima, Y. Nagadomi and T. Ozaki, "A 100MHz Ladder FeRAM Design with Capacitance-Coupled-Bitline (CCB) Cell," IEEE Symposium on VLSI Circuits Digest of Technical Papers, pp. 227-228, June 2010.
[26] W. Otsuka et al., "A 4Mb conductive-bridge resistive memory with 2.3GB/s read-throughput and 216MB/s program-throughput," 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011, pp. 210-211.
[27] K. Aratani et al., "A Novel Resistance Memory with High Scalability and Nanosecond Switching," 2007 IEEE International Electron Devices Meeting, Washington, DC, 2007, pp. 783-786.
[28] K. Rho et al., "23.5 A 4Gb LPDDR2 STT-MRAM with compact 9F2 1T1MTJ cell and hierarchical bitline architecture," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 396-397
[29] J. C. S. Kools, "Exchange-biased spin-valves for magnetic storage," in IEEE Transactions on Magnetics, vol. 32, no. 4, pp. 3165-3184, Jul 1996.
[30] S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi and M. DeHerren, "Progress and outlook for MRAM technology," in IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 2814-2819, Sep 1999.
[31] S. Tehrani et al., "Recent developments in magnetic tunnel junction MRAM," in IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 2752-2757, Sep 2000.
[32] K. C. Chun, H. Zhao, J. D. Harms, T. H. Kim, J. P. Wang and C. H. Kim, "A Scaling Roadmap and Performance Evaluation of In-Plane and Perpendicular MTJ Based STT-MRAMs for High-Density Cache Memory," in IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 598-610, Feb. 2013.
[33] Alexander Driskill-Smith, "New Samsung Open Innovation Program For STT-MRAM Technology - An Interview With Alexander Driskill-Smith" AZO Materials Sep, 2013
[34] M. Hosomi et al., "A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram," IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., Washington, DC, 2005, pp. 459-462.
[35] S. W. Chung et al., "4Gbit density STT-MRAM using perpendicular MTJ realized with compact cell structure," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 27.1.1-27.1.4.
[36] C. Park et al., "Systematic optimization of 1 Gbit perpendicular magnetic tunnel junction arrays for 28 nm embedded STT-MRAM and beyond," 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 2015, pp. 26.2.1-26.2.4.
[37] H. Noguchi et al., "Novel voltage controlled MRAM (VCM) with fast read/write circuits for ultra large last level cache," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 27.5.1-27.5.4.
[38] Y. J. Song et al., "Highly functional and reliable 8Mb STT-MRAM embedded in 28nm logic," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 27.2.1-27.2.4.
[39] J. M. Slaughter et al., "Technology for reliable spin-torque MRAM products," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 21.5.1-21.5.4.
[40] S. Song et al., "CMOS device scaling beyond 100 nm," International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), San Francisco, CA, USA, 2000, pp. 235-238.
[41] Jean-Pierre Colinge, Cynthia A. Colinge, “Physics of Semiconductior Devices.” Springer-Verlag, NY, pp. 175-182, 2002.
[42] E. Morifuji et al., "A 1.5 V high performance mixed signal integration with indium channel for 130 nm technology node," International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), San Francisco, CA, USA, 2000, pp. 459-462.
[43] C. H. Shih, Y. M. Chen and C. Lien, "Effect of insulated shallow extension for the improved short-channel effect of sub-100 nm MOSFET," International Semiconductor Device Research Symposium, pp. 158-159, Dec. 2003.
[44] S. Severi et al., "Diffusion-less junctions and super halo profiles for PMOS transistors formed by SPER and FUSI gate in 45 nm physical gate length devices," IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004., 2004, pp. 99-102.
[45] M. F. Chang et al., "An offset-tolerant current-sampling-based sense amplifier for Sub-100nA-cell-current nonvolatile memory," 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2011, pp. 206-208.
[46] M. Jefremow et al., "Time-differential sense amplifier for sub-80mV bitline voltage embedded STT-MRAM in 40nm CMOS," 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, 2013, pp. 216-217.
[47] N. Verma and A. P. Chandrakasan, "A High-Density 45nm SRAM Using Small-Signal Non-Strobed Regenerative Sensing," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2008, pp. 380-621.
[48] C. C. Lin et al., "7.4 A 256b-wordlength ReRAM-based TCAM with 1ns search-time and 14?? improvement in word length-energy efficiency-density product using 2.5T1R cell," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 136-137.
[49] M. F. Chang et al., "19.4 embedded 1Mb ReRAM in 28nm CMOS with 0.27-to-1V read using swing-sample-and-couple sense amplifier and self-boost-write-termination scheme," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 332-333.
[50] B. Giridhar, N. Pinckney, D. Sylvester and D. Blaauw, "13.7 A reconfigurable sense amplifier with auto-zero calibration and pre-amplification in 28nm CMOS," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 242-243.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *