|
[1] Johansson V, Garwicz M, Kanje M, Schouenborg J, Tingström A, Görman U. Authenticity, “depression, and deep brain stimulation,” Front Integr Neurosci, May 2011. [2] Hsiang-Yi Hung, Sheng-Tzung Tsai, Hsin-Chi Tsai, Shin-Yuan Chen, “N-of-1 trial following deep brain stimulation in a patient with obsessive–compulsive disorder,” Tzu Chi Medical Journal, vol. 24, Issue 4, 2012. [3] Machado A, Ogrin M, Rosenow JM, Henderson JM, “A 12-month prospective study of gasserian ganglion stimulation for trigeminal neuropathic pain,” Stereotactic and Functional Neurosurgery, pp. 216-224, Aug. 2007. [4] Groiss SJ, Wojtecki L, Südmeyer M, Schnitzler, “A. Deep brain stimulation in Parkinson's disease,” Ther Adv Neurol Disord, pp. 20-28, 2009. [5] T. L. Skarpaas and M. J. Morrell, “Intracranial stimulation therapy for epilepsy,” Neurotherapeutics, vol. 6, no. 2, pp. 238–243, 2009 [6] B. Serneels, T. Piessens, M. Stepert and W. Dehaene, “A high-voltage output driver in a standard 2.5 V 0.25 /spl mu/m CMOS technology,” 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519), vol. 1, pp. 146-518, 2004. [7] U. Bihr, T. Ungru, H. Xu, J. Anders, J. Becker and M. Ortmanns, “A bidirectional neural interface with a HV stimulator and a LV neural amplifier,” 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), pp. 401-404, 2013. [8] N. Dommel, Y. T. Wong, T. Lehmann, P. Byrnes-Preston, N. H. Lovell and G. J. Suaning, “Microelectronic Retinal Prosthesis: II. Use of High-Voltage CMOS in Retinal Neurostimulators,” 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4651-4654, 2006. [9] G. Boselli, V. Vassilev and C. Duvvury, “Drain Extended NMOS High Current Behavior and ESD Protection Strategy for HV Applications in Sub-100nm CMOS Technologies,” 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual, pp. 342-347, 2007. [10] J. Mitros et al., “High-Voltage Drain Extended MOS Transistors for 0.18 um Logic CMOS Process,” 30th European Solid-State Device Research Conference, pp. 376-379, 2000. [11] B. Serneels, E. Geukens, B. De Muer and T. Piessens, “A 1.5W 10V-output Class-D amplifier using a boosted supply from a single 3.3V input in standard 1.8V/3.3V 0.18μm CMOS,” 2012 IEEE International Solid-State Circuits Conference, pp. 94-96, 2012. [12] J. A. Appels and H. M. J. Vaes, “High voltage thin layer devices (RESURF devices),” 1979 International Electron Devices Meeting, pp. 238-241, 1979. [13] A. W. Ludikhuize, “A review of RESURF technology,” 12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No.00CH37094), pp. 11-18, 2000. [14] G. Charitat, M.A. Bouanane, P. Austin, P. Rossel, “Modelling and improving the on-resistance of LDMOS RESURF devices,” Microelectronics Journal, vol. 27, Issues 2–3, pp. 181-190, 1996. [15] Wan-Wei Chiang, Hsin Chen, “A Voltage-Tunable Neural Stimulator Using Drain-Extended Transistors,” Masters dissertation, Department of Electrical Engineering National Tsing Hua University, 2014 [16] S. Bourret, M. Sawan and R. Plamondon, “Programmable high-amplitude balanced stimulus current-source for implantable microstimulators,” Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 5, pp. 1938-1941, 1997. [17] M. Knaipp, G. Rohrer, R. Minixhofer and E. Seebacher, “Investigations on the high current behavior of lateral diffused high-voltage transistors,” IEEE Transactions on Electron Devices, vol. 51, no. 10, pp. 1711-1720, Oct. 2004. [18] van Dongen MN, Hoebeek FE, Koekkoek SK, De Zeeuw CI, Serdijn WA, “High frequency switched-mode stimulation can evoke post synaptic responses in cerebellar principal neurons,” Front Neuroeng, Mar. 2015. [19] W. Hsu and A. Schmid, “Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing,” IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 4, pp. 878-888, Aug. 2017. [20] M. Haas, P. Vogelmann and M. Ortmanns, “A Neuromodulator Frontend With Reconfigurable Class-B Current and Voltage Controlled Stimulator,” IEEE Solid-State Circuits Letters, vol. 1, no. 3, pp. 54-57, Mar. 2018. [21] K. Chen, Y. Lo and W. Liu, “A 37.6mm21024-channel high-compliance-voltage SoC for epiretinal prostheses,” 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 294-295, 2013. [22] I. Williams and T. G. Constandinou, “An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 2, pp. 129-139, Apr. 2013. [23] Z. Luo and M. Ker, “A High-Voltage-Tolerant and Precise Charge-Balanced Neuro-Stimulator in Low Voltage CMOS Process,” IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 6, pp. 1087-1099, Dec. 2016.
|