帳號:guest(18.117.233.156)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李念安
作者(外文):Lee, Nien-An
論文名稱(中文):一個具備偏移誤差消除及閃爍雜訊壓抑的互補式金氧半導體飛時測距型深度影像感測器
論文名稱(外文):A CMOS Time-of-Flight Depth Image Sensor with In-Pixel Offset Cancellation and Flicker Noise Suppression
指導教授(中文):謝志成
指導教授(外文):Hsieh, Chih-Cheng
口試委員(中文):鄭桂忠
陳新
謝秉璇
口試委員(外文):Tang, Kea-Tiong
Chen, Hsin
Hsieh, Ping-Hsuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061582
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:73
中文關鍵詞:互補式金氧半導體影像感測器深度影像感測器飛時測距偏移誤差消除閃爍雜訊壓抑
外文關鍵詞:CMOS image sensordepth imagingtime-of-flight (TOF) imagingoffset cancellationflicker noise suppression
相關次數:
  • 推薦推薦:0
  • 點閱點閱:712
  • 評分評分:*****
  • 下載下載:52
  • 收藏收藏:0
本論文提出了一個使用截波穩定技術(Chopper Stabilization Technique)的互補式金氧半導體飛時測距型深度影像感測器,具有偏移誤差(Offset)消除及閃爍雜訊(Flicker Noise)壓抑的能力。
為了解決飛時測距型深度影像感測器的像素(Pixel)內背景光飽和的問題,我們在考慮了像素內背景光消除的能力以及像素面積之後,選擇了一個使用感光二極體(photodiode)做極性轉換積分的架構。然而,此架構會有偏移誤差累加的問題,偏移誤差累加的量甚至比背景光的積分還要更嚴重,除此之外,還有閃爍雜訊累加的問題,會使距離量測的準確度大幅下降。因此,我們採用了截波穩定技術,考慮了P+/N-well接面的感光二極體與N-well/P-sub接面的寄生感光二極體之後,我們將截波穩定的頻率設定在調變頻率(Modulation Frequency)的二分之一,如此一來,不論是感光二極體或是寄生感光二極體所造成的偏移誤差的累加以及閃爍雜訊的累加都可以被消除。此外,為了達到更好的距離準確度,我們也提升了調變頻率。
此架構使用TSMC 0.18微米1P6M互補式金氧半導體標準製程檔進行模擬,設計並模擬驗證一個擁有64×64像素陣列的飛時測距型深度影像感測器原型,類比端的操作電壓為3.3伏特,數位端為1.8伏特。影像感測器的像素間距(Pixel Pitch)為22微米,填充因子(Fill Factor)為26%。模擬結果顯示,在距離範圍為0.45到2.1公尺達到99%線性度,並且可將1公尺下的準確度提升10倍。
This thesis presents a CMOS time-of-flight (TOF) depth image sensor with in-pixel offset cancellation and flicker noise suppression by adopting chopper stabilization technique.
To deal with in-pixel background light saturation issue in TOF depth image sensors, a TOF pixel with photodiode polarity switching integration technique is chosen for its great performance in in-pixel background light cancellation and relatively small pixel area by using only one integration capacitor. However, this TOF pixel structure suffers from offset accumulation even more critical than the original background light issue, and the low frequency flicker noise accumulation degrades the accuracy. Therefore, chopper stabilization technique is implemented. After taking both P+/N-well photodiode and N-well/P-sub parasitic photodiode into consideration, with chopper stabilization performed at half of the modulation frequency, both offset accumulation and low frequency flicker noise accumulation induced by photodiode and parasitic photodiode are eliminated. Moreover, for better accuracy performance, the modulation frequency is increased.
A prototype of 64×64 pixel array TOF depth image sensor has been designed and simulated in TSMC standard 0.18μm 1P6M CMOS technology with 3.3V supply voltage for analog and 1.8V for digital. The pixel pitch is 22μm with a fill-factor of 26%. The simulation results show that the proposed chopper stabilized TOF depth sensor achieves 99% linearity within a range of 0.45 to 2.1 meters, and the accuracy at 1 meter achieved a 10 times improvement.
ABSTRACT II
CONTENTS III
LIST OF FIGURES VII
LIST OF TABLES X
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 THESIS CONTRIBUTION 2
1.3 THESIS ORGANIZATION 3
CHAPTER 2 BACKGROUND INFORMATION 4
2.1 FUNDAMENTALS OF CMOS IMAGE SENSOR 4
2.1.1 Basic Terms of Image Sensor 4
2.1.1.1 Frame Rate 4
2.1.1.2 Array Size 5
2.1.1.3 Pixel Pitch 5
2.1.1.4 Fill Factor 5
2.1.1.5 Integration Time 5
2.1.2 Active Pixel Sensor (APS) 6
2.1.2.1 3T-APS 7
2.1.2.2 4T-APS 9
2.1.2.3 Readout Integrated Circuit (ROIC) 11
2.2 DEPTH IMAGING TECHNIQUES 13
2.2.1 Passive Triangulation 13
2.2.2 Active Triangulation 14
2.2.3 Time-of-Flight (TOF) 15
2.2.3.1 Direct Time-of-Flight 16
2.2.3.2 Indirect Time-of-Flight 17
2.2.4 Summary 20
2.3 DESIGN CONSIDERATION OF TOF SENSOR 21
2.3.1 Depth Accuracy 21
2.3.2 Background Light Interference 23
2.4 SUMMARY 24
CHAPTER 3 TOF DEPTH SENSOR WITH BACKGROUND LIGHT SUPPRESSION ……………………………………………………………………..25
3.1 BACKGROUND LIGHT SUPPRESSION TECHNIQUE IN INDIRECT TOF 25
3.1.1 Minimum-Charge Transfer (MCT) 26
3.1.2 Voltage-Mode Subtraction 27
3.1.3 Current-Domain Subtraction 28
3.1.4 Charge-Domain Subtraction 29
3.1.5 Summary 34
3.2 IN-PIXEL BACKGROUND LIGHT SUPPRESSION WITH OFFSET CANCELLATION AND FLICKER NOISE SUPPRESSION 35
3.2.1 Offset Accumulation Problem 36
3.2.2 Flicker Noise Accumulation Problem 37
3.2.3 Finite Gain Error Accumulation 37
3.2.4 Chopper Stabilization (CHS) 38
3.2.5 Summary 39
CHAPTER 4 PROTOTYPE IMPLEMENTATION OF TOF DEPTH IMAGE SENSOR……… 41
4.1 SYSTEM ARCHITECTURE OF TOF SENSOR 41
4.2 TOF PIXEL CIRCUIT 43
4.2.1 CTIA with Chopper 43
4.2.1.1 Chopping Frequency 45
4.3 MODULATION FREQUENCY 47
4.4 COLUMN READOUT CIRCUITS 48
4.5 CHIP OPERATION 49
4.6 SUMMARY 50
CHAPTER 5 SIMULATION RESULTS 51
5.1 CTIA OP-AMP 51
5.2 TOF PIXEL WITH CHOPPER 52
5.2.1 Accumulation cycle 52
5.2.2 Finite Gain Error Accumulation 54
5.2.3 Noise Simulation 57
5.2.4 Depth Simulation 59
5.3 POST-LAYOUT SIMULATION 60
5.3.1 Coupling Effect 61
5.3.2 Accuracy 64
5.4 SUMMARY 64
CHAPTER 6 CONCLUSION 66
6.1 SUMMARY 66
6.2 FUTURE WORK 67
BIBLIOGRAPHY 68
[1] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun, “Real Time Motion Capture Using a Single Time-of-Flight Camera,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
[2] M. Van den Bergh and L. Van Gool, “Combining RGB and ToF Cameras for Real-Time 3D Hand Gesture Interaction,” IEEE Workshop on Applications of Computer Vision, 2011.
[3] P. J. Besl, “Active, Optical Range Imaging Sensors,” Machine Vision and Applications, vol. 1, pp. 127-152, 1988.
[4] R. G. Dorsch, G. Hausler, and J. M. Herrmann, “Laser Triangulation: Fundamental Uncertainty in Distance Measurement,” Applied Optics, vol. 33, pp. 1306-1314, 1994.
[5] J. Ohta, “Smart CMOS Image Sensors and Applications,” CRC Press, 2007
[6] J. Nakamura, “Image Sensors and Signal Processing for Digital Still Cameras,” CRC Press, 2005
[7] L. Yao, “CMOS Readout Circuit Design for Infrared Image Sensors,” proceedings of the SPIE, International Symposium on Photoelectronic Detection and Imaging, vol. 7384, 2009.
[8] A. W. Hoffman, “Capacitor Transimpedance Amplifier ( CTIA) with Shared Load,” US patent 6,252,462, 2001.
[9] R. Lange, “3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD-Technology,” 2000.
[10] M. Abdelhamid, J. Beers, and M. Omar, “Extracting Depth Information Using a Correlation Matching Algorithm,” Journal of Software Engineering and Applications, vol. 5, 2012.
[11] S. Koyama, K. Onozawa, K. Tanaka, and Y. Kato, “A 3D vision 2.1Mpixel image sensor for single-lens camera systems,” IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2013.
[12] Y. Oike, M. Ikeda, and K. Asada, “A 120×110 Position Sensor With the Capability of Sensitive and Selective Light Detection in Wide Dynamic Range for Robust Active Range Finding,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 246-251, 2004.
[13] L. Gasparini, M. Zarghami, H. Xu, L. Parmesan, M. Moreno Garcia, M. Unternährer, B. Bessire, A. Stefanov, D. Stoppa, and M. Perenzoni, “A 32×32-pixel time-resolved single-photon image sensor with 44.64μm pitch and 19.48% fill-factor with on-chip row/frame skipping features reaching 800kHz observation rate for quantum physics applications,” IEEE International Solid-State Circuits Conference, 2018.
[14] C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9, pp. 1847-1854, 2005.
[15] C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128×128 Single-Photon Imager with on-Chip Column-Level 10b Time-to-Digital Converter Array Capable of 97ps Resolution,” IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2008.
[16] C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18-μm CMOS SoC for a 100-m-Range 10-Frame/s 200×96-Pixel Time-of-Flight Depth Sensor,” IEEE Journal of Solid-State Circuits, vol. 49, no. 1, pp. 315-330, 2014.
[17] A. R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D. N. Yaung, and E. Charbon, “A 256×256 45/65nm 3D-Stacked SPAD-Based Direct TOF Image Sensor for LiDAR Applications with Optical Polar Modulation for up to 18.6dB Interference Suppression,” IEEE International Solid-State Circuits Conference, 2018.
[18] A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-Photon Three-Dimensional Imaging at up to 10 Kilometers Range,” Optics Express, vol. 25, no. 10, pp. 11919-11931, 2017.
[19] D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, and L. Gonzo, “A Range Image Sensor Based on 10-μm Lock-In Pixels in 0.18-μm CMOS Imaging Technology,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 248-258, 2011.
[20] S.-M. Han, T. Takasawa, T. Akahori, K. Yasutomi, K. Kagawa, and S. Kawahito, “A 413×240-Pixel Sub-Centimeter Resolution Time-of-Flight CMOS Image Sensor with In-Pixel Background Canceling Using Lateral-Electric-Field Charge Modulators,” IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2014.
[21] J. Cho, J. Choi, S.-J. Kim, S. Park, J. Shin, J. D. K. Kim, and E. Yoon “A 3-D Camera with Adaptable Background Light Suppression Using Pixel-Binning and Super-Resolution,” IEEE Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2319-2332, 2014.
[22] C. S. Bamji, S. Mehta, B. Thompson, T. Elkhatib, S. Wurster, O. Akkaya, A. Payne, J. Godbaz, M. Fenton, V. Rajasekaran, L. Prather, S. Nagaraja, V. Mogallapu, D. Snow, R. McCauley, M. Mukadam, I. Agi, S. McCarthy, Z. Xu, T. Perry, W. Qian, V.-H. Chan, P. Adepu, G. Ali, M. Ahmed, A. Mukherjee, S. Nayak, D. Gampell, S. Acharya, L. Kordus, and P. O'Connor, “1Mpixel 65nm BSI 320MHz Demodulated TOF Image Sensor with 3.5μm Global Shutter Pixels and Analog Binning,” IEEE International Solid-State Circuits Conference, 2018.
[23] J, Cho, “CMOS Sensors for Time-Resolved Active Imaging,” 2017.
[24] T. Oggier, R. Kaufmann, M. Lehmann, B. Büttgen, S. Neukom, M. Richter, M. Schweizer, P. Metzler, F. Lustenberger, and N. Blanc, “Novel Pixel Architecture with Inherent Background Suppression for 3D Time-of-Flight Imaging,” Proceedings SPIE, vol. 5665, pp.1-8, 2005.
[25] M. Lehmann, T. Oggier, B. Büttgen, Chr. Gimkiewicz, M. Schweizer, R. Kaufmann, F. Lustenberger, and N. Blanc, “Smart Pixels for Future 3D-TOF Sensors,” IEEE Workshop on CCDs and Advanced Image Sensors, 2005.
[26] B. Büttgen, T. Oggier, M. Lehmann, R. Kaufmann, S. Neukom, M. Richter, M. Schweizer, D. Beyeler, R. Cook, C. Gimkiewicz, C. Urban, P. Metzler, P. Seitz, and F. Lustenberger, “High-Speed and High-Sensitive Demodulation Pixel for 3D Imaging,” Proceedings SPIE, vol. 6056, pp.22-33, 2006.
[27] B. Büttgen and P. Seitz, “Robust Optical Time-of-Flight Range Imaging Based on Smart Pixel Structures,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, 2008.
[28] M. Perenzoni, N. Massari, D. Stoppa, L. Pancheri, M. Malfatti, and L. Gonzo, “A 160×120-Pixels Range Camera with In-Pixel Correlated Double Sampling and Fixed-Pattern Noise Correction,” IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1672-1681, 2011.
[29] M. Davidovic, M. Hofbauer, K. Schneider-Hornstein, and H. Zimmermann, “High Dynamic Range Background Light Suppression for a TOF Distance Measurement Sensor in 180nm CMOS,” IEEE Sensors, pp. 359-362, 2011.
[30] M. Davidovic, M. Hofbauer, and H. Zimmermann, “A 33 × 25 µm² Low-Power Range Finder,” IEEE International Symposium on Circuits and Systems, 2012.
[31] C. Anand, V. K. Jacob, and M. Sarkar, “A Current Mode Time-of-Flight Pixel with 400 klx Background Light Subtraction,” IEEE International Midwest Symposium on Circuits and Systems, 2016.
[32] T. Liao, N.-A. Lee, and C.-C. Hsieh, “A CMOS Time of Flight (TOF) Depth Image Sensor with In-Pixel Background Cancellation and Sensitivity Improvement Using Phase Shifting Readout Technique,” IEEE Asian Solid-State Circuits Conference, 2017.
[33] T.-H. Hsu, T. Liao, N.-A. Lee, and C.-C. Hsieh, “A CMOS Time-of-Flight Depth Image Sensor With In-Pixel Background Light Cancellation and Phase Shifting Readout Technique,” IEEE Journal of Solid-State Circuits, vol. 53, no. 10, pp. 2898-2905, 2018.
[34] D. A. Kerth, “Switched-capacitor integrator with chopper stabilization performed at the sampling rate,” U.S. Patent 5,477,481, Dec. 1995.
[35] C. C. Enz and G. C. Temes, “Circuit Techniques for Reducing the Effects of Op-amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization,” Proceedings of the IEEE, vol. 84, no. 11, pp. 1584-1614, 1996.
[36] J. F. Witte, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS Chopper Offset-Stabilized Opamp,” IEEE Journal of Solid-State Circuits, vol. 42, no. 7, pp. 1529-1535, 2007.
[37] H. M. Jafari and R. Genov, “Chopper-Stabilized Bidirectional Current Acquisition Circuits for Electrochemical Amperometric Biosensors,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 5, pp. 1149-1157, 2013.
[38] Q. Fan, K. A. A. Makinwa, and J. H. Huijsing, “Capacitively-Coupled Chopper Amplifiers,” Analog Circuits and Signal Processing, Springer, 2017.
[39] W.-F. Chou, S.-F. Yeh, and C.-C. Hsieh, “A 143dB 1.96% FPN Linear-Logarithmic CMOS Image Sensor with Threshold-Voltage Cancellation and Tunable Linear Range,” IEEE Sensors, 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具備背景光消除及使用相位位移技巧使感光度提升的互補式金氧半導體深度影像感測器
2. 生醫應用之低功耗類比數位轉換器 : 具軌對軌可適性功率控制比較器設計
3. 具直流偏移校正與增益校準迴路之短通道可變增益放大器
4. 具有數位自動增益迴路之2.4-GHz無電感式射頻前端
5. 基於頻率合成器之 2.4-GHz 全數位控制式二進制頻移鍵控發射器
6. 具有電容不匹配校正之 2.4 GHz數位控制震盪器
7. A Quadrature Sub-harmonic Up-converter with Sideband & Carrier Leakage Calibration
8. 應用於影像感測器具線性度校正功能之行平行十位元漸進式類比數位轉換器
9. 應用於紅外線感測器陣列之1.8伏自動轉換增益讀出電路
10. 具自適應式電容切換技術之低功耗非同步漸近式類比數位轉換器之設計與製作
11. 具動態範圍延展及雜訊抑制之超低電壓0.5伏特脈衝寬度調變互補式金氧半導體影像感測器
12. 應用於互補式金屬氧化物半導體影像感測器以毗連像素傳遞技術讀出之時間延遲積分電路架構
13. 一個具有臨界電壓消除技術及可調變轉換曲線之高動態範圍線性對數互補式金氧半導體影像感測器
14. 一個應用於生醫系統低功耗多級共用內建截波器之切換式運算放大器三角積分調變器之設計與製作
15. 具兩段式曝光讀取之高動態範圍互補式金氧半導體影像感測器
 
* *