帳號:guest(3.135.212.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱子育
作者(外文):Chiu, Zih-Yu
論文名稱(中文):應用於低電壓內嵌式動態隨機存取記憶體之資料警覺感測放大器
論文名稱(外文):A Data-Aware Sense Amplifier for Low-Voltage Embedded Dynamic Random Access Memory
指導教授(中文):張孟凡
指導教授(外文):Chang, Meng-Fan
口試委員(中文):呂仁碩
許世玄
口試委員(外文):Liu, Ren-Shuo
Sheu, Shyh-Shyuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061580
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:51
中文關鍵詞:動態隨機存取記憶體低電壓感測放大器資料警覺
外文關鍵詞:dynamic random access memorylow voltagesense amplifierdata aware
相關次數:
  • 推薦推薦:0
  • 點閱點閱:713
  • 評分評分:*****
  • 下載下載:26
  • 收藏收藏:0
因為成本效益比靜態隨機存取記憶體高且隨機存取速度較快閃記憶體更為快速之優點,內嵌式動態隨機存取記憶體廣泛地應用於電子產品、穿戴性裝置以及物聯網之應用。
因為電晶體具有漏電流之關係,內嵌式動態隨機存取記憶體需要週期性地做刷新維持所儲存的資料。然而刷新的動作越頻繁,功率消耗則越大。基於這個原因,低功率消耗之設計在內嵌式動態隨機存取記憶體便變得十分重要。最直接降低功率消耗的方式就是降低額定電壓,然而將內嵌式動態隨機存取記憶體操作於低電壓則需要考慮記憶胞之資料保存時間會短於操作於高電壓之問題。
為了使內嵌式動態隨機存取記憶體操作於低電壓之環境,我們提出資料警覺之感測放大器增加記憶胞儲存之電荷,因此可以增加感測裕值使得在低壓時可以讀出正確資料,進而降低在自我刷新時所耗損之功率。
我們在內嵌式動態隨機存取記憶體晶片中實現此提案,於台積65奈米標準CMOS製程下製造。量測結果顯示對於低壓操作部分,於室溫下的環境下可以比傳統再低70毫伏正常運作,並減少功率消耗。
Embedded DRAMs are commonly used in many electronic products, wearable devices and Internet of Thing application because of its lower cost than SRAM and its faster random access than FLASH memory.
Due to the MOSFET native leakage characteristic, embedded DRAM needs to refresh with a fixed period to maintain stored data. The more frequent refresh operation does, the more power consumes. For this reason, low power design is significant in embedded DRAM design. The direct method to reduce power consumption is scaled down the supply voltage, but operation in low supply voltage, the cell data retention time will shorter than data retention time in high supply voltage.
To solve this problem, we propose a Data-Aware Sense Amplifier to extend data retention time in lower voltage condition. With capacitor boosting operation, this sense amplifier increases charge stored in cell capacitor so as to enlarge margin in sensing phase achieves to read out data correctly in low voltage mode, and reduces power consumption in self-refresh mode.
A Data-Aware Sense Amplifier is implemented in an embedded DRAM macro, which is fabricated in TSMC 65nm Generic CMOS process. The measurement result shows that 70mV lower supply voltage can be achieved at room temperature in low supply voltage operation.
Chapter 1 1
1.1 Low Power Embedded-DRAM Applications 1
1.2 Challenges of Low Power Embedded DRAM 2
1.3 Overview of This Thesis 4
Chapter 2 5
2.1 Embedded DRAM Description 5
2.2 Structure of Embedded DRAM 6
2.3 Write Operation 8
2.4 Read Operation 10
2.5 Refresh Operation 12
Chapter 3 14
3.1 Cell Structure 14
3.1.1 Capacitor Structure 16
3.1.2 Gain Cell 17
3.2 Data Retention Time 17
3.3 Leakage Mechanisms 18
3.3.1 Sub-threshold Current (I1) 19
3.3.2 Gate-Induced Drain Leakage (I2) 20
3.3.3 Gate-Oxide Tunneling Current (I3) 21
3.3.4 Hot carrier injection Current 22
3.3.5 Reverse-Biased Junction BTBT Current 23
3.3.6 Punch-Through Current (I6) 23
3.4 Power Consumption 23
3.5 Previous Work 24
3.5.1 Low-voltage sensing and write-back scheme 24
Chapter 4 26
4.1 Motivation of Proposed Sense Amplifier 26
4.2 Proposed Sense Amplifier 27
4.2.1 Structure of Proposed Sense Amplifier 27
4.2.2 Sensing Operations 28
4.3 Analyses of Proposed Sense Amplifier 31
4.3.1 Sense Margin Enhancement 32
4.3.2 Power Reduction in Operation Mode 33
4.3.3 Yield Analysis 34
4.3.4 Refresh Period 36
4.3.5 Capacitor Analysis of Proposed Sense Amplifier 38
Chapter 5 39
5.1 Macro of Embedded DRAM 39
5.1.1 Memory Cell Arrays 40
5.1.2 Peripheral Circuits 41
5.2 Design for Test Chip 42
Chapter 6 43
6.1 Measurement Results 43
6.2 Conclusions and Future Work 46
1. D. Keitel-Schulz, et al, "Embedded DRAM development: Technology, physical design, and application issues," in IEEE Design & Test of Computers, vol. 18, no. 3, pp. 7-15, May 2001.
2. Y. Taito, et al, "A high density memory for SoC with a 143MHz SRAM interface using sense-synchronized-read/write," 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC., San Francisco, CA, USA, pp. 306-307 vol.1, 2003.
3. A. Valero, et al., "An hybrid eDRAM/SRAM macrocell to implement first-level data caches," 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), New York, NY, pp. 213-221, 2009.
4. S. Tomishima et al., "A 1.0-V 230-MHz column access embedded DRAM for portable MPEG applications," in IEEE Journal of Solid-State Circuits, vol. 36, no. 11, pp. 1728-1737, Nov 2001.
5. K. Itoh, et al, VLSI Memory Chip Design: Springer, 2001
6. K. Itoh, et al., Ultra-Low Voltage Nano-Scale Memories: Springer, 2007
7. K. Zhang, et al, Embedded Memories for Nano-Scale VLSIs: Springer, 2009
8. H. Takato, "Embedded DRAM Technologies," 30th European Solid-State Device Research Conference, pp. 13-18, 2000.
9. H. Ishiuchi, et al., "Embedded DRAM technologies," in International Electron Devices Meeting Technical Digest, pp. 33-36, 1997.
10. H. Takato, "Embedded DRAM Technologies," presented at the Proceeding of the 30th EuropeanSolid-State Device Research Conference, 2000.
11. K. Itoh, et al, "VLSI memory technology: Current status and future trends," Proceedings of the 25th European Solid-State Circuits Conference, Duisburg, Germany, pp. 3-10, 1999.
12. P. W. Diodato, "Embedded DRAM: more than just a memory," in IEEE Communications Magazine, vol. 38, no. 7, pp. 118-126, Jul 2000.
13. A. Teman, et al,"Review and classification of gain cell eDRAM implementations," 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, Eilat, pp. 1-5, 2012.
14. Y. Mori, et al, "New Method for Evaluating Electric Field at Junctions of DRAM Cell Transistors by Measuring Junction Leakage Current," in IEEE Transactions on Electron Devices, vol. 56, no. 2, pp. 252-259, Feb. 2009.
15. H. Tanaka, et al., "A precise on-chip voltage generator for a gigascale DRAM with a negative word-line scheme," in IEEE Journal of Solid-State Circuits, vol. 34, no. 8, pp. 1084-1090, Aug 1999.
16. K. Roy, et al, "Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits," in Proceedings of the IEEE, vol. 91, no. 2, pp. 305-327, Feb 2003.
17. Y. Tsukikawa, et al., "An efficient back-bias generator with hybrid pumping circuit for 1.5-V DRAMs," in IEEE Journal of Solid-State Circuits, vol. 29, no. 4, pp. 534-538, Apr 1994.
18. Kyeong-Sik Min, et al, "A fast pump-down VBB generator for sub-1.5-V DRAMs," in IEEE Journal of Solid-State Circuits, vol. 36, no. 7, pp. 1154-1157, Jul 2001.
19. A. Wang, et al., Subthreshold Design for Ultra Low-Power Systems: Springer-Verlag, 2007.
20. B. L. Anderson, et al, Fundamentals of Semiconductor Devices: McGraw-Hill, 2005.
21. H. Falk, et al, "Prolog to: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer cmos circuits," in Proceedings of the IEEE, vol. 91, no. 2, pp. 303-304, Feb. 2003.
22. S. Mukhopadhyay, et al., "Modeling and analysis of loading effect on leakage of nanoscaled bulk-CMOS logic circuits," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, pp. 1486-1495, 2006.
23. S. Mukhopadhyay et al, "Modeling and analysis of loading effect on leakage of nanoscaled bulk-CMOS logic circuits," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 8, pp. 1486-1495, Aug. 2006.
24. X. Yuan, et al., "Gate-Induced-Drain-Leakage Current in 45-nm CMOS Technology," in IEEE Transactions on Device and Materials Reliability, vol. 8, no. 3, pp. 501-508, Sept. 2008.
25. K. Roy, et al, "Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits," in Proceedings of the IEEE, vol. 91, no. 2, pp. 305-327, Feb 2003.
26. M. C. T. Chao, et al, "Fault models for embedded-DRAM macros," 2009 46th ACM/IEEE Design Automation Conference, San Francisco, CA, pp. 714-719, 2009.
27. B. Wicht, et al, "Yield and speed optimization of a latch-type voltage sense amplifier," in IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, July 2004
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *