|
[1] “Cardiovascular diseases (CVDs),” Jun. 2016. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs317/en/. [2] “Cardiovascular disease risk factors,” 2011. [Online]. Available: http://www.world-heart-federation.org/press/fact-sheets/cardiovascular-disease-risk-factors/. [3] “Rise Above Heart Failure,” 2016. [Online]. Available: http://www.heart.org/HEARTORG/Conditions/HeartFailure/Heart-Failure UCM002019SubHomePage.jsp. [4] “Cardiovascular diseases (CVDs),” Sept. 2016. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs317/en/. [5] “Latest statistics show heart failure on the rise; cardiovascular diseases remain leading killer,” January 2017. [Online]. Available: http://newsroom.heart.org/news/latest-statistics-show-heart-failure-on-the-rise;-cardiovascular-diseases-remain-leading-killer [6] “Congestive heart failure,” Sep. 2016. [Online]. Available: http://www.md-health.com/Congestive-Heart-Failure.html. [7] “Nomenclature and criteria for diagnosis of diseases of the heart and great blood vessels,” American Heart Journal, vol. 88, p. 679. [Online]. Available: http://dx.doi.org/10.1016/0002-8703(74)90267-1 [8] U. Rajendra Acharya, K. Paul Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, “Heart rate variability: a review,” Medical and Biological Engineering and Computing, vol. 44, no. 12, pp. 1031–1051, 2006. [Online]. Available: http://dx.doi.org/10.1007/s11517-006-0119-0 [9] P. Melillo, N. D. Luca, M. Bracale, and L. Pecchia, “Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability,” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 3, pp. 727–733, May 2013. [10] W. Chen, L. Zheng, K. Li, Q. Wang, G. Liu, and Q. Jiang, “A novel and effective method for congestive heart failure detection and quantification using dynamic heart rate variability measurement,” PLOS ONE, vol. 11, no. 11, pp. 1–18, 11 2016. [Online]. Available: https://doi.org/10.1371/journal.pone.0165304 [11] M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis of biological signals,” Physical review E, vol. 71, no. 2, p. 021906, 2005. [12] S.-D. Wu, C.-W. Wu, S.-G. Lin, K.-Y. Lee, and C.-K. Peng, “Analysis of complex time series using refined composite multiscale entropy,” Physics Letters A, vol. 378, no. 20, pp. 1369 – 1374, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0375960114002916 [13] S.-D. Wu, C.-W. Wu, K.-Y. Lee, and S.-G. Lin, “Modified multiscale entropy for short-term time series analysis,” Physica A: Statistical Mechanics and its Applications, vol. 392, no. 23, pp. 5865 – 5873, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378437113007061 [14] C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 5, no. 1, pp. 82–87, 1995. [15] Y.-C. Lin, Y.-H. Lin, M.-T. Lo, C.-K. Peng, N. E. Huang, C. C. H. Yang, and T. B. J. Kuo, “Novel application of multi dynamic trend analysis as a sensitive tool for detecting the effects of aging and congestive heart failure on heart rate variability,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 26, no. 2, p. 023109, 2016. [Online]. Available: http://dx.doi.org/10.1063/1.4941673 [16] W. Navidi, Statistics for Engineers and Scientists, 4th ed. McGraw-Hill Education, 2015. [17] N. Nachar, “The mann-whitney u: A test for assessing whether two independent samples come from the same distribution,” Tutorials in Quantitative Methods for Psychology, vol. 4, no. 1, pp. 13–20, 2008. [18] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm. [19] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000. [Online]. Available: http://circ.ahajournals.org/content/101/23/e215 [20] M. Mark H. Ebell M.D., Evidence-Based Diagnosis A Handbook of Clinical Prediction Rules. Springer New York. |