帳號:guest(13.59.108.218)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魏子閔
作者(外文):Wei, Tzu-Min
論文名稱(中文):應用在13.56百萬赫茲具有共振頻率調整機制之無線電力傳輸接收器
論文名稱(外文):A 13.56MHz Wireless Power Transfer Receiver with Resonant Frequency Tuning Mechanism
指導教授(中文):謝秉璇
指導教授(外文):Hsieh, Ping-Hsuan
口試委員(中文):陳柏宏
陳新
口試委員(外文):Chen, Po-Hung
Chen, Hsin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061552
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:100
中文關鍵詞:無線電力傳輸耦合線圈整流器相位差調整
外文關鍵詞:wireless power transfercoupling coilrectifierphase-shift control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:644
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
相較於有線的充電方式,具有便利性和更安全的電感式無線電力傳輸系統已經被廣泛地使用在植入式的應用。在無線電力傳輸系統當中,有兩項設計指標尤為重要,分別為功率傳輸能力以及功率轉換效率。為了提升這兩項指標,過去的作法致力於提升傳送端或是接收端的效率。但是,無線電力傳輸系統的功率傳輸能力或是功率轉換效率會隨著耦合電路的參數誤差或是接收端的非線性操作,可能會有明顯的下降,而這將會造成充電時間過久以及過熱的問題。為了解決這些議題,本論文提出一具有可調整共振頻率之接收端電路設計。藉由在整流器之後置入一個開關,共振頻率可經由控制介面運作的逆電流量來調整。
設計並實作在0.18微米互補式金屬氧化物半導體製程,操作頻率在13.56百萬赫茲,量測結果顯示,相較於傳統被動式整流器架構的接收端設計,功率傳輸能力能提升至50%。當分別在傳送端和接收端的兩線圈耦合係數在0.04到0.11之間時,所提出的接收端電路可得到至少13.98毫瓦的功率輸出和26%的系統功率效率。在75歐姆的附載下,可達到31.33毫瓦的最大功率輸出和54.71%的最高系統功率效率。
Inductive-based wireless power transfer (WPT) system has been
widely used in implant applications with their convenience and
more safe operation compared to traditional charging method with
wire. Two design specifications are especially of great concern in
WPT system, which are power transfer capability (PTC) and power
conversion efficiency (PCE). In order to improve these two specifications, previous works have devoted to optimizing the efficiency of either the receiver or transmitter. However, the PTC or PCE of the WPT system may significantly degrade due to the variation of the coupling circuit parameters or nonlinear operation of the receiver, which resulting in long charging time and overheating problem. In order to solve these issues, a receiver design with adjustable resonant frequency is presented in this thesis. By inserting a switch after the rectifier, the resonant frequency can be tuned by controlling the amount of reverse current of the interface operation. Designed and fabricated in 0.18 mm CMOS process, with operating frequency of 13.56 MHz, measurement results show that the improvement of PTC can be up to 50 %, compared to conventional receiver design with passive rectifier structure. At least 13.98 mW of output power and 26 % of system power efficiency can be obtained with proposed receiver, when the coupling coefficient between two coils in transmitter and receiver is range from 0.04 to 0.11. The maximum output power of 31.33 mW and a peak system power efficiency of 54.71 % are achieved with 75 W loading.
Chapter 1 Introduction 1
Chapter 2 Inductive-Based Wireless Power Transfer System 5
Chapter 3 Receiver Design with Adjustable Input Impedance 39
Chapter 4 Measurement Results 72
Chapter 5 Conclusion 97
[1] Tianjia Sun, Xiang Xie and Zhihua Wang, Wireless Power Transfer for Medical Microsystems, Springer Science & Business Media, 2013, pp. 3.
[2] Constantine A. Balanis ; 2005, "Antenna Theory: Analysis and Design",3rd edition Ch. 2 p. 34.
[3] (2018). Wireless Power Consortium (WPC) website-Qi Certified Product Database [Online]. Available:
http://www.wirelesspowerconsortium.com/products/search
[4] S. Guo, H. Lee, "An efficiency-enhanced CMOS rectifier with unbalancedbiased comparators for transcutaneous-powered high-current implants",IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1796-1804, Jun. 2009.
[5] C. Huang, T. Kawajiri and H. Ishikuro, "A Near Optimum 13.56 MHz CMOS Active Rectifier With Circuit-Delay Real-Time Calibrations for High-Current Biomedical Implants", IEEE J. of Solid-State Circuits, vol. 51,no. 8, pp. 1797-1809, Aug. 2016.
[6] R.F. Xue, K.W. Cheng, M. Je, "High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation", IEEE Trans. Circuits Syst. I Reg. Pap., vol. 60, no. 4, pp. 867-874, 2013.
[7] M. Baker, R. Sarpeshkar, "Feedback analysis and design of RF power links for low-power bionic systems", IEEE Trans. Biomed. Circuits Syst., vol. 1, pp. 28-38, 2007.
[8] H.-K. Cha, W.-T. Park, M. Je, "A CMOS rectifier with a cross-coupled latched comparator for wireless power transfer in biomedical applications",IEEE Trans. Circuits Syst. II Express Briefs, vol. 59, no. 7, pp. 409-413,Jul. 2012.
[9] J. G. Bolger, F. A. Kirsten, L. S. Ng, "Inductive power coupling for an electric highway system", Proc. 28th IEEE Veh. Technol. Conf., pp. 137-144, Mar. 1978.
[10] R. Erfani, F. Marefat, A. M. Sodagar, P. Mohseni, "Transcutaneous capacitive wireless power transfer (C-WPT) for biomedical implants", Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 2561-2564, May 2017.
[11] Summerer L, Purcell O. Concepts for wireless energy transmission via laser. Europeans Space Agency (ESA)-Advanced Concepts Team; 2009.
[12] B. Strassner, K. Chang, "Microwave power transmission: Historical milestones and system components", Proc. IEEE, vol. 101, no. 6, pp. 1379-1396, Jun. 2013.
[13] P. P. Mercier, A. P. Chandrakasan, "Rapid wireless capacitor charging using a multi-tapped inductively-coupled secondary coil", IEEE Trans. Circuits Syst. I, vol. 60, no. 9, pp. 2263-2272, Sep. 2013.
[14] W. X. Zhong, S. Y. R. Hui, "Maximum energy efficiency tracking for wireless power transfer systems", IEEE Trans. Power Electron., vol. 30, no. 7, pp.4025-4034, Jul. 2015.
[15] (2018). Electronics Tutorials-Frequency Response [Online]. Available:
http://www.electronics-tutorials.ws/amplifier/frequency-response.html
[16] D. M. Pozar, Microwave Engineering, 4th ed. New York: Wiley, 2012, pp.274.
[17] G. Wang, W. Liu, M. Sivaprakasam, G. A. Kendir, "Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 52, no. 10, pp. 2109-2117, Oct. 2005.
[18] L.Steigerwald, "A comparison of Half-Bridge Resonant Converters," IEEE Trans. Power Electron, YoU, No.2, April 1988.
[19] S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, "Simple accurate expressions for planar spiral inductances," IEEE Journal of Solid-State Circuits, vol. 34, pp. 1419-1424, 1999.
[20] A. Berger, M. Agostinelli, S. Vesti, J. A. Oliver, J. A. Cobos and M. Huemer,"A Wireless Charging System Applying Phase-Shift and Amplitude Control to Maximize Efficiency and Extractable Power", IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6338-6348, Nov. 2015.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *