|
[1] J. Berstel, A. Lauve, C. Reutenauer, and F. Saliola, Combinatorics on Words: Christoffel Words and Repetitions in Words, Providence, USA: American Mathematical Society Press, 2008. [2] J.-P. Borel and F. Laubie, “Quelques mots sur la droite projective r´eell,” Journal de Th´eorie des Nombres de Bordeaus, vol. 5, pp. 23–51, 1993. [3] M. Aigner, Markov’s Theorem and 100 Years of the Uniqueness Conjecture, Berlin, Germany: Springer Press, 2013. [4] G. Melan¸ccon, “On a Class of Lyndon Words Extending Christoffel Words and Related to a Multidimensional Continued Fraction Algorithm,” Journal of Integer Sequences, vol. 16, article 13.9.7, 2013. [5] A. D’Aniello, A. de Luca and A. De Luca, “On Christoffel and standard words and their derivatives,” Journal of Theoretical Computer Science, vol. 658, part A, pp. 122–147, January 2017. [6] M. Lothaire, Combinatorics on Words, Boston, USA: Addison-Wesley Press, 1983. [7] J. Berstel and A. de Luca, “Sturmian words, Lyndon words and trees,” Journal of Theoretical Computer Science, vol. 178, pp. 171–203, May 1997. [8] M. Lothaire, Algebraic Combinatorics on Words, Cambridge, UK: Cambridge University Press, 2002. [9] J. -P. Borel and C. Reutenauer, “On Christoffel classes,” Journal of RAIRO–Theoretical Informatics and Applications, vol. 40, number 1, pp. 15–27, 2006. [10] V. Berth´e, A. de Luca, and C. Reutenauer, “On an involution of Christoffel words and Sturmian morphisms,” European Journal of Combinatorics, vol. 29, issue 2, pp. 535–553, February 2008. [11] C. Reutenauer, “Studies on finite Sturmian words,” Journal of Theoretical Computer Science, vol. 591, pp. 106–133, October 2015.
|