帳號:guest(18.116.50.234)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施蘊庭
作者(外文):Shih, Yun-Ting
論文名稱(中文):加入偏振控制器的改良式雙馬赫詹德干涉式周界入侵感測系統之理論模型、模擬與多執行緒軟體研製
論文名稱(外文):MODELING, SIMULATION AND MULTI-THREADING SOFTWARE IMPLEMENTATION OF A POLARIZATION CONTROLLED MODIFIED DUAL MACH-ZEHNDER INTERFEROMETRIC PERIMETER INTRUSION DETECTION SYSTEM
指導教授(中文):鐘太郎
指導教授(外文):Jong, Tai-Lang
口試委員(中文):王立康
黃裕煒
謝奇文
口試委員(外文):Wang, Li-Karn
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061518
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:99
中文關鍵詞:周界入侵感測系統改良式雙馬赫詹德干涉式感測儀定位演算法
外文關鍵詞:perimeter intrusion detection systemmodified dual Mach-Zehnder interferometric sensorpositioning algorithm
相關次數:
  • 推薦推薦:0
  • 點閱點閱:928
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文探討加入偏振控制器的改良式雙馬赫詹德干涉式周界入侵感測系統,利用相量矩陣推導訊號的數學模型,並開發適用於該系統的多執行緒軟體,以及使用模擬訊號測試入侵定位演算法的效果。
過去文獻中通常假設雙馬赫詹德干涉儀中只有其中一條光纖受到入侵擾動,本系統因採用多芯光纜,當有入侵時,光纜中的所有光纖都會受到影響,將此現象也納入理論推導當中,最後發現並不會改變干涉的結果。
本論文研製一套能適用於本篇論文使用的硬體架構之圖形化使用者介面多執行緒軟體,以視覺化的方式讓使用者能清楚看見接收到的訊號,時間域以及頻率域的變化,也能設定入侵判斷的各個臨界值,改變其靈敏度。該軟體能一邊接收資料即時判斷入侵以及定位,同時也可以儲存入侵時或是使用者手動儲存的原始資料,改善舊版軟體同一時間只能夠做入侵判斷、定位或儲存資料的缺點,也可以暫停或開啟歷史資料檢視器,回顧之前儲存下來的訊號。
最後,本論文依照推導得到的數學模型,加以模擬入侵定位結果,並且與過去文獻提出的四種時間延遲估測方法比較,可以發現本論文使用的入侵定位演算法,即是從使用者設定的頻率上下界,去估算這段頻率範圍的相位差所導致的時間延遲,並由此推算出入侵點的位置,雖然精準度並非極其完美,但大多誤差都能在 取樣點的需求規格以內,換算為長度大約在 公尺以內,而且最大的優勢是執行速度遠勝於其它的時間延遲估測方法。除了模擬的結果外,也在王立康教授實驗室架設該系統進行實測,結果定位誤差也大多都能在需求規格內。
In this thesis, a modified dual Mach-Zehnder interferometric perimeter intrusion detection system (DMZIPIDS) is investigated. Different from previous version, polarization controller is added to the system to reduce the errors frequently encountered in previous system due to states of polarization.
A mathematical model of the modified DMZIPIDS is constructed in this thesis. Usually in the dual Mach-Zehnder interferometer literatures, the intrusion disturbance only occurs to one of the two fiber arms of the DMZI. In our systems, a multi-fiber cable is used in building the DMZIPIDS so that when an intrusion occurs, the intrusion disturbance actually affects all three fibers, including the two interferometric arms and a return path. This situation is considered in deriving the mathematical model of our DMZIPIDS and we found that the phase changes caused by the intrusion disturbance on the return path will eventually cancelled out in the detector output signals, thus not affecting the final interferometric results.
A new GUI-based software for controlling the modified DMZIPIDS is also designed and implemented in Qt C++. The new graphical user interface provides users with a friendly way to monitor the received detector signals in both time-domain and frequency-domain, to see the saved history data of the system, and to set up all parameters of the system such as thresholds of intrusion detection, .., etc. This software employs multi-threading, which enables it to save raw intrusion detector data onto disk and to continuously receive and process new detector data from the data acquisition system at the same time, thus overcome the drawbacks of the previous single-threading software which can do either saving or monitoring but not both at any time.
Finally, the derived mathematical model of the modified DMZIPIDS is utilized in the simulation of the proposed intrusion detection and location algorithm. For comparison, four other time delay estimation methods are also simulated and the results are compared. Although the algorithm in this thesis for locating intrusion position is not perfect, the estimated intrusion location errors are within the requirements range specification of 1.5 samples. Moreover, the execution speed of the proposed intrusion location algorithm is far better than that of the other four methods. In addition, an experimental modified fiber optic DMZIPIDS was built in Prof. Wang’s laboratory and various intrusion events at different locations were experimented and the corresponding real detector output data is received and processed by our software. The results show that the requirements intrusion location errors specification of 80 m is achieved by our method.
摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 文獻回顧 2
1.3.1 周界入侵感測系統 2
1.3.2 周界入侵感測系統的評估 2
1.3.3 周界入侵感測系統的種類 3
1.3.4 基於光纖感測器的周界入侵感測系統 4
1.4 論文貢獻 5
1.5 論文架構 5
第二章 硬體架構與數學模型 7
2.1 前言 7
2.2 光學元件 7
2.2.1 雷射(Light Amplification by Stimulated Emission of Radiation, Laser)光源 7
2.2.2 光纖耦合器(Fiber Optic Couplers) 7
2.2.3 光纖偏振控制器(Fiber Optic Polarization Controllers, PC) 8
2.2.4 光纖偏振保持耦合器(Fiber Optic Polarization-Maintaining Couplers, PM Couplers) 8
2.2.5 光纖偏振分光計(Fiber Optic Polarization Beam Splitters, PBS) 8
2.2.6 光纖光檢測器(Fiber Optic Photodetectors, PD) 8
2.2.7 資料擷取系統(Data Acquisition System) 9
2.3 馬赫詹德干涉儀 9
2.3.1 相量矩陣形式 10
2.3.2 擴展相量矩陣形式 13
2.4 加入偏振控制器的改良式雙馬赫詹德干涉式周界入侵感測系統 16
2.4.1 訊號與元件的擴展相量矩陣形式 16
2.4.2 順時針光路 19
2.4.3 逆時針光路 22
2.4.4 光強度分析 26
第三章 軟體架構 28
3.1 前言 28
3.2 軟體介面 28
3.2.1 軟體開發工具 28
3.2.2 周界入侵感測系統檢視器 29
3.2.3 周界入侵感測系統歷史資料檢視器 32
3.2.4 執行緒 33
3.2.5 軟體執行流程 35
3.3 快速傅立葉轉換 36
3.4 入侵判斷演算法 38
3.5 入侵定位演算法 41
第四章 實驗模擬與結果 45
4.1 前言 45
4.2 模擬結果 45
4.2.1 時間延遲估測方法 45
4.2.2 模擬訊號之數學模型 47
4.2.3 訊號振幅對定位誤差的影響 51
4.2.4 訊號頻率範圍對定位誤差的影響 62
4.2.5 訊號雜訊比對定位誤差的影響 74
4.3 多執行緒軟體的實作 85
4.4 實驗結果 87
4.5 總結 92
第五章 結論與未來展望 94
參考文獻 96
[1] Liddiard, Kevin C., Brian W. Rice, and Rodney J. Watson. "Infrared intrusion sensor." U.S. Patent No. 5,465,080. 7 Nov. 1995.
[2] Seed, Willian R. "Radar intrusion detection system." U.S. Patent No. 4,952,939. 28 Aug. 1990.
[3] Roman, Rodrigo, Jianying Zhou, and Javier Lopez. "Applying intrusion detection systems to wireless sensor networks." IEEE Consumer Communications & Networking Conference (CCNC 2006). 2006.
[4] Mahmoud, Seedahmed S., and Jim Katsifolis. "Robust event classification for a fiber optic perimeter intrusion detection system using level crossing features and artificial neural networks." SPIE Defense, Security, and Sensing. 2010.
[5] Szustakowski, Mieczyslaw, et al. "Fiber sensors for optic cable monitoring." Optical Security and Safety. 2004.
[6] Song, Minho, et al., "Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube." Optical Fiber Technology 3.2 (1997): 194-196.
[7] Berkoff, T. A., and A. D. Kersey. "Experimental demonstration of a fiber Bragg grating accelerometer." IEEE Photonics Technology Letters 8.12 (1996): 1677-1679.
[8] Huston, Dryver R., et al. "Measuring micro floor vibrations with distributed fiber optic sensors." Distributed Fiber Optical Sensors and Measuring Networks. 2001.
[9] Dandridge, Anthony, and Alan D. Kersey. "Overview of Mach-Zehnder sensor technology and applications." OE/Fiber LASE'88. 1989.
[10] Feraday, S., and S. Tarr. "Standardised procedures for evaluating PIDS." 2008 42nd Annual IEEE International Carnahan Conference on Security Technology.
[11] Armstrong, D., and C. Peile. "Perimeter intruder detection systems performance standard." Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology.
[12] Patterson, I. J. "The control of fox movement by electric fencing." Biological Conservation 11.4 (1977): 267-278.
[13] Hone, J., and B. Atkinson. "Evaluation of fencing to control feral pig movement." Wildlife Research 10.3 (1983): 499-505.
[14] Yousefi, Ali, Alireza Dibazar, and Theodore Berger. "Intelligent fence intrusion detection system: detection of intentional fence breaching and recognition of fence climbing." 2008 IEEE Conference on Technologies for Homeland Security.
[15] Chraim, Fabien, and Kristofer Pister. "Smart fence: Decentralized sequential hypothesis testing for perimeter security." International Conference on Sensor Systems and Software. 2013.
[16] Pevler, A. E. "Security implications of high-power microwave technology." Technology and Society, 1997.'Technology and Society at a Time of Sweeping Change'. Proceedings., 1997 International Symposium on.
[17] Peichl, M., et al. "Passive microwave remote sensing for security applications." 2007 European Radar Conference.
[18] Weber, Peter, et al. "Low-cost radar surveillance of inland waterways for homeland security applications." IEEE Radar Conference. 2004.
[19] Tahmoush, D., and J. Silvious. "Radar microDoppler for security applications: Modeling men versus women." 2009 IEEE Antennas and Propagation Society International Symposium.
[20] Keller, Hans J. "Advanced passive infrared presence detectors as key elements in integrated security and building automation systems." IEEE, CH3372− 0/93 (1993).
[21] Moghavvemi, M., and Lu Chin Seng. "Pyroelectric infrared sensor for intruder detection." Analog and digital techniques in electrical engineering. Conference. 2004.
[22] Zappi, Piero, Elisabetta Farella, and Luca Benini. "Tracking motion direction and distance with pyroelectric IR sensors." IEEE Sensors Journal 10.9 (2010): 1486-1494.
[23] Lee, Suk, Kyoung Nam Ha, and Kyung Chang Lee. "A pyroelectric infrared sensor-based indoor location-aware system for the smart home." IEEE Transactions on Consumer Electronics 52.4 (2006).
[24] Griffiths, Barry. "Developments in and applications of fibre optic intrusion detection sensors." Security Technology. 1995.
[25] Szustakowski, M., et al. "Recent development of fibre optic sensors for perimeter security." Modern Problems of Radio Engineering, Telecommunications and Computer Science. 2002.
[26] Szustakowski, Mieczyslaw, Wiesław M. Ciurapinski, and Marek Zyczkowski. "Trends in optoelectronic perimeter security sensors." Proc. SPIE. Vol. 6736. 2007.
[27] Juarez, Juan C., et al. "Distributed fiber-optic intrusion sensor system." Journal of lightwave technology 23.6 (2005): 2081-2087.
[28] McAulay, Alastair D., and Jian Wang. "A Sagnac interferometer sensor system for intrusion detection and localization." Defense and Security. 2004.
[29] Spammer, Stephanus J., Pieter L. Swart, and Anatoli A. Chtcherbakov. "Merged Sagnac-Michelson interferometer for distributed disturbance detection." Journal of lightwave technology 15.6 (1997): 972-976.
[30] Hua, Ping, et al. "Integrated optical dual Mach–Zehnder interferometer sensor." Sensors and Actuators B: Chemical 87.2 (2002): 250-257.
[31] Yuan, Wu, et al. "Fiber optic line-based sensor employing time delay estimation for disturbance detection and location." Journal of lightwave technology 32.5 (2014): 1032-1037.
[32] Zhang, Chunxi, et al. "Location algorithm for multi-disturbances in fiber-optic distributed disturbance sensor using a Mach-Zehnder interferometer." 9th International Conference on Optical Communications and Networks. 2010.
[33] Hartog, Arthur H., Martin P. Gold, and Adrian P. Leach. "Optical time-domain reflectometry." U.S. Patent No. 4,823,166. 18 Apr. 1989.
[34] "Fotech Solutions," http://www.fotech.com/.
[35] "Future Fibre Technologyies | FFT," http://www.fftsecurity.com/.
[36] 林育堂. "改良式雙馬赫詹德干涉式周界入侵感測系統之模擬." 國立清華大學電機工程學系碩士論文(2016).
[37] Gildersleeve, Joseph S. "The Mach-Zehnder coupler." (1997).
[38] 林永豊. "光纖振動感測器之設計." 國立中山大學電機工程學系碩士在職專班碩士論文(2005).
[39] 高鈺倫. "改良型雙Mach-Zehnder干涉儀用於分佈式振動感測器的研究." 國立清華大學光電工程研究所碩士論文(2016).
[40] "Qt | Cross-platform software development for embedded & desktop," http://www.qt.io/.
[41] Arora, Nimar S., Robert D. Blumofe, and C. Greg Plaxton. "Thread scheduling for multiprogrammed multiprocessors." Proceedings of the tenth annual ACM symposium on Parallel algorithms and architectures. 1998.
[42] 蔡郁彬, 胡繼陽. "作業系統." 學貫行銷股份有限公司(2005).
[43] "FFTW Home Page," http://www.fftw.org.
[44] Frigo, Matteo, and Steven G. Johnson. "The design and implementation of FFTW3." Proceedings of the IEEE 93.2 (2005): 216-231.
[45] Cooley, J. W., and J. W. Tukey. "An algorithm for machine calculation of complex Fourier series. Mathematics of computing, reprinted 1972." Digital signal processing. IEEE Press, New York, NY (1965): 223-227.
[46] OPPENHEIM, Alan V., Ronald W. SCHAFER, and John R. BUCK. "Discrete-Time Signal Processing." (1999).
[47] "MATLAB – MathWorks, " http://www.mathworks.com/.
[48] 吳淙恩. "雙馬赫詹德干涉式周界入侵感測系統之設計與模擬." 國立清華大學電機工程學系碩士論文(2015).
[49] 陳冠佐. "光纖周界入侵感測系統之研製." 國立清華大學電機工程學系碩士論文(2014).
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *