|
1. Smith, M.J., K.M. Simmons, and J.C. Cambier, B cells in type 1 diabetes mellitus and diabetic kidney disease. Nature Reviews Nephrology, 2017. 13: p. 712. 2. Chang, Y.-H., Y.-C. Wang, and B.-S. Chen, Identification of transcription factor cooperativity via stochastic system model. Bioinformatics, 2006. 22(18): p. 2276-2282. 3. Wang, Y.-C. and B.-S. Chen, Integrated cellular network of transcription regulations and protein-protein interactions. BMC Systems Biology, 2010. 4(1): p. 20. 4. Brennecke, J., et al., Principles of MicroRNA–Target Recognition. PLoS Biology, 2005. 3(3): p. e85. 5. Weinhold, B., Epigenetics: The Science of Change. Environmental Health Perspectives, 2006. 114(3): p. A160-A167. 6. Stark, C., et al., BioGRID: a general repository for interaction datasets. Nucleic Acids Research, 2006. 34(suppl_1): p. D535-D539. 7. Zheng, G., et al., ITFP: an integrated platform of mammalian transcription factors. Bioinformatics, 2008. 24(20): p. 2416-2417. 8. Agarwal, V., et al., Predicting effective microRNA target sites in mammalian mRNAs. eLife, 2015. 4: p. e05005. 9. Shannon, P., et al., Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 2003. 13(11): p. 2498-2504. 10. Sedger, L.M. and M.F. McDermott, TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants – past, present and future. Cytokine & Growth Factor Reviews, 2014. 25(4): p. 453-472. 11. George, D. and A. Salmeron, Cot/Tpl-2 Protein Kinase as a Target for the Treatment of Inflammatory Disease. Current Topics in Medicinal Chemistry, 2009. 9(7): p. 611-622. 12. Geretti, E. and M. Klagsbrun, Neuropilins: Novel Targets for Anti-Angiogenesis Therapies. Cell Adhesion & Migration, 2007. 1(2): p. 56-61. 13. Walsh, N., et al., Humanized mouse models of clinical disease. Annual review of pathology, 2017. 12: p. 187-215. 14. Avila, G., et al., FKBP12 binding to RyR1 modulates excitation-contraction coupling in mouse skeletal myotubes. J Biol Chem, 2003. 278(25): p. 22600-8. 15. Kojima, I., J. Medina, and N. Yuko, Role of the glucose-sensing receptor in insulin secretion: KOJIMA et al. Vol. 19. 2017. 54-62. 16. Sithanandam, G. and L.M. Anderson, The ERBB3 receptor in cancer and cancer gene therapy. Cancer gene therapy, 2008. 15(7): p. 413-448. 17. Al-Haddad, R., et al., Epigenetic changes in diabetes. Neuroscience Letters, 2016. 625(Supplement C): p. 64-69. 18. Parameswaran, N. and S. Patial, Tumor Necrosis Factor-α Signaling in Macrophages. Critical reviews in eukaryotic gene expression, 2010. 20(2): p. 87-103. 19. Siggs, O.M., et al., Mutation of Fnip1 is associated with B-cell deficiency, cardiomyopathy, and elevated AMPK activity. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(26): p. E3706-E3715. 20. Kallionpää, H., et al., Innate Immune Activity Is Detected Prior to Seroconversion in Children With HLA-Conferred Type 1 Diabetes Susceptibility. Diabetes, 2014. 63(7): p. 2402. 21. Hassan, G.A., et al., Role of immune system modulation in prevention of type 1 diabetes mellitus. Indian Journal of Endocrinology and Metabolism, 2012. 16(6): p. 904-909. 22. Castro, E. and R. Eeles, The role of BRCA1 and BRCA2 in prostate cancer. Asian Journal of Andrology, 2012. 14(3): p. 409-414. 23. Robertson, R.P., Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem, 2004. 279(41): p. 42351-4. 24. Blaser, H., et al., TNF and ROS Crosstalk in Inflammation. Trends in Cell Biology, 2016. 26(4): p. 249-261. 25. Li, Z., et al., The Role of Semaphorin 3A in Bone Remodeling. Frontiers in Cellular Neuroscience, 2017. 11: p. 40. 26. Romagnani, S., Type 1 T helper and type 2 T helper cells: Functions, regulation and role in protection and disease. International Journal of Clinical and Laboratory Research, 1992. 21(2): p. 152-158. 27. Lopez-Castejon, G. and D. Brough, Understanding the mechanism of IL-1β secretion. Cytokine & Growth Factor Reviews, 2011. 22(4): p. 189-195. 28. Maser, R.E., et al., Cardiovascular disease and arterial calcification in insulin-dependent diabetes mellitus: interrelations and risk factor profiles. Pittsburgh Epidemiology of Diabetes Complications Study-V. Arteriosclerosis, Thrombosis, and Vascular Biology, 1991. 11(4): p. 958. 29. Groop, P.-H., et al., The Presence and Severity of Chronic Kidney Disease Predicts All-Cause Mortality in Type 1 Diabetes. Diabetes, 2009. 58(7): p. 1651-1658. 30. Holl, R.W., et al., Diabetic retinopathy in pediatric patients with type-1 diabetes: Effect of diabetes duration, prepubertal and pubertal onset of diabetes, and metabolic control. The Journal of Pediatrics, 1998. 132(5): p. 790-794. 31. Gancheva, S., et al., Variants in Genes Controlling Oxidative Metabolism Contribute to Lower Hepatic ATP Independent of Liver Fat Content in Type 1 Diabetes. Diabetes, 2016. 65(7): p. 1849. 32. Inui, M., et al., USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nature Cell Biology, 2011. 13: p. 1368. 33. Tanizawa, Y., et al., Unregulated Elevation of Glutamate Dehydrogenase Activity Induces Glutamine-Stimulated Insulin Secretion. Diabetes, 2002. 51(3): p. 712. 34. Khan, D., et al., Reversible induction of translational isoforms of p53 in glucose deprivation. Cell Death and Differentiation, 2015. 22(7): p. 1203-1218. 35. Tanaka, Y., et al., Overexpression of acetyl CoA carboxylase β exacerbates podocyte injury in the kidney of streptozotocin-induced diabetic mice. Biochemical and Biophysical Research Communications, 2018. 495(1): p. 1115-1121. 36. Shin, G.-C., et al., Hepatitis B virus–triggered autophagy targets TNFRSF10B/death receptor 5 for degradation to limit TNFSF10/TRAIL response. Autophagy, 2016. 12(12): p. 2451-2466. 37. Lamb, J., et al., The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science, 2006. 313(5795): p. 1929.
|