帳號:guest(18.226.4.248)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王正一
作者(外文):Wang, Zheng-Yi.
論文名稱(中文):藉由大數據挖掘和全基因組辨別來探究糖尿病前期到一型糖尿病的進展機制
論文名稱(外文):Investigating the Progressive Mechanism from Prediabetes to Type 1 Diabetes by Big Data Mining and Genome-Wide Microarray Data Identification : Systems Biology Approach
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):詹鴻霖
張晃猷
高茂傑
口試委員(外文):Chan, Hong-Lin
Chang, Hwan-You
Kao, Mou-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061517
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:52
中文關鍵詞:糖尿病前期一型糖尿病基因調控網路蛋白質交互作用網路基因和表觀遺傳網路進展機制
外文關鍵詞:PrediabetesType_1_diabetesgener_egulatory_networkprotein-proteininteraction_networkgenome-widegenetic-and-epigenetic_networkprogression_mechanism
相關次數:
  • 推薦推薦:0
  • 點閱點閱:914
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
在本研究中,我們應用系統生物學方法構建蛋白質-蛋白質相互作用網絡(PPINs)和基因調控網絡(GRNs),然後將其整合成全基因組-遺傳和表觀遺傳網絡(GWGEN)以探討糖尿病前期到T1D的發病機制。利用相應的外周血β細胞微陣列數據建立GWGENs系統識別方法,然後我們通過提出的主要網絡投影(PNP)方法提取核心GWGENs。從糖尿病前期到T1D兩個階段的核心GWGENs被投影為KEGG途徑,以研究涉及前驅糖尿病到T1D的進展機制的重要蛋白質,miRNA,基因,轉錄因子(TF)。
根據糖尿病前期對T1D的早期進展機制,受體IL2RG,SEMA3A和TNFSF1A分別接受細胞因子IL2,SEMA3A,TNF和ROS,將信號轉運到TFRRARA,RELA,ATF2,ERG,ESR1,BRCA,和FOXL1;然後ATF2的乙酰化和磷酸化,ESR1的甲基化和RARA的去甲基化和microRNA MIR198可以激活或抑制靶基因MAP3K8,FNIP1,AR,SOD1,HBA1,NOS3,IL1B,TPO以使早期發展。這些基因具有多種細胞功能,包括炎症,適應性免疫,細胞增殖,凋亡,細胞因子(即TNF,IL32,ROS)的製造。根據糖尿病前期到T1D的後期結果,受體可通過TFs NFE2L1,TCF3,ESR1,GATA和MAFG等途徑接受細胞因子轉運信號以調控靶基因TP53,GLUD1,ACACB,IL32,VCAM1,TNFSF10。這些基因具有多種細胞功能,包括細胞葡萄糖飢餓反應,胰島素分泌,ATP製造,脂質儲存,葡萄糖代謝過程,適應性免疫以引起糖尿病前期進展為T1D。除了這些靶基因的功能障礙之外,表觀遺傳修飾在前驅糖尿病進展至T1D的致病機制中也起重要作用。最後,還開發了藥物數據挖掘方法來設計多分子藥物來恢復這些靶基因的正常功能。
In this study, we apply the system biology method to construct the protein-protein interaction networks (PPINs) and gene-regulatory networks (GRNs), which can then be integrated as genome-wide-genetic and epigenetic networks (GWGENs) for investigating the pathogenic mechanisms of progression from prediabetes to T1D. Using the corresponding microarray data in peripheral blood β-cells to establish the GWGENs by system identification method, we then extract the core GWGENs by a proposed principal network projection (PNP) method. The core GWGENs of two stages progression from prediabetes to T1D are projected to KEGG pathway to investigate important proteins, miRNAs, genes, transcription factors (TFs) involving in the progression mechanism of prediabetes to T1D.
According to the results of early stage progression mechanism of prediabetes to T1D, receptors IL2RG, SEMA3A and TNFSF1A can receive the cytokines IL2, SEMA3A, TNF and ROS, respectively to transport signals to TFs RARA, RELA, ATF2, ERG, ESR1, BRCA, and FOXL1; then the acetylation and phosphorylation of ATF2, methylation of ESR1 and demethylation of RARA and microRNA MIR198 can activate or repress target genes MAP3K8, FNIP1, AR, SOD1, HBA1, NOS3, IL1B, TPO to make an early stage progression. These genes have multiple cellular functions including inflammation, adaptive immunity, cell proliferation, apoptosis, fabrication of cytokines (i.e. TNF, IL32, ROS). According to the results of late stage progression of prediabetes to T1D, receptors can receive the cytokines to transport signals in order to regulate the target genes TP53, GLUD1, ACACB, IL32, VCAM1, TNFSF10 through TFs NFE2L1, TCF3, ESR1, GATA and MAFG. These genes have multiple cellular functions including cellular glucose starvation response, insulin secretion, fabrication of ATP, storage of lipid, glucose metabolic process, adaptive immunity to cause prediabetes progress to T1D. Besides the dysfunction of these target genes, the epigenetic modifications also play an important role in the pathogenic mechanism of prediabetes progress to T1D. Finally, drug data mining method is also developed to design a multiple molecule drugs to restore the normal functions of these target genes.
摘要 i
Abstract ii
Introduction 1
Materials and Methods 3
2.1 Overview of the construction processes of real GWGENs of 2 stages progression of prediabetes to T1D 3
2.2 Big data mining and data processing for the information of constructing GWGENs of human 4
Results 6
3.1 The core pathways of early stage pathogenic progression of prediabetes to T1D 7
3.2 The core pathways of late stage pathogenic progression of prediabetes to T1D 8
Discussion 11
4.1 The main pathogenic mechanism of early stage of progression of prediabetes to T1D 12
4.2 The main pathogenic mechanism of late stage of progression of prediabetes to T1D 13
4.3 The overall progression mechanism from prediabetes to T1D 18
4.4 The multiple-molecules drug design for prediabetes by drug data mining method 19
Conclusion 21
Supplementary Material 23
6.1 Dynamic models of the candidate GWGEN for identifying early and late stage real GWGEN in the progression of prediabetes to T1D 23
6.2 System identification of candidate GWGEN via genome-wide microarray data 26
6.3 System order detection scheme for pruning the false positives of candidate to obtain the real GWGENs of early and late stage progression of prediabetes to T1D 32
Tables
Table 1. The numbers of edges and nodes of candidate GWGEN and real GWGEN 38
Table 2. Information of the top 5 molecule drugs for early stage progression of prediabetes to T1D 38
Table 3. Information of the top 5 molecule drugs for late stage progression of prediabetes to T1D 41
Figures
Figure 1. The flowchart of system biology method to identify the real GWGENs 44
Figure 2. The timeline of progression of prediabetes to T1D 44
Figure 3. Real GWGEN of early stage progression of prediabetes to T1D 45
Figure 4. Real GWGEN of late stage progression of prediabetes to T1D 45
Figure 5. Core GWGEN of early stage progression of prediabetes to T1D 46
Figure 6. Core GWGEN of late stage progression of prediabetes to T1D 46
Figure 7. The pathogenic mechanism based on core pathways of early stage progression of prediabetes to T1D 47
Figure 8. The pathogenic mechanism based on core pathways of late stage progression of prediabetes to T1D 48
Figure 9. The overall progression mechanisms of early to late stage of prediabetes to T1D 49



1. Smith, M.J., K.M. Simmons, and J.C. Cambier, B cells in type 1 diabetes mellitus and diabetic kidney disease. Nature Reviews Nephrology, 2017. 13: p. 712.
2. Chang, Y.-H., Y.-C. Wang, and B.-S. Chen, Identification of transcription factor cooperativity via stochastic system model. Bioinformatics, 2006. 22(18): p. 2276-2282.
3. Wang, Y.-C. and B.-S. Chen, Integrated cellular network of transcription regulations and protein-protein interactions. BMC Systems Biology, 2010. 4(1): p. 20.
4. Brennecke, J., et al., Principles of MicroRNA–Target Recognition. PLoS Biology, 2005. 3(3): p. e85.
5. Weinhold, B., Epigenetics: The Science of Change. Environmental Health Perspectives, 2006. 114(3): p. A160-A167.
6. Stark, C., et al., BioGRID: a general repository for interaction datasets. Nucleic Acids Research, 2006. 34(suppl_1): p. D535-D539.
7. Zheng, G., et al., ITFP: an integrated platform of mammalian transcription factors. Bioinformatics, 2008. 24(20): p. 2416-2417.
8. Agarwal, V., et al., Predicting effective microRNA target sites in mammalian mRNAs. eLife, 2015. 4: p. e05005.
9. Shannon, P., et al., Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 2003. 13(11): p. 2498-2504.
10. Sedger, L.M. and M.F. McDermott, TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants – past, present and future. Cytokine & Growth Factor Reviews, 2014. 25(4): p. 453-472.
11. George, D. and A. Salmeron, Cot/Tpl-2 Protein Kinase as a Target for the Treatment of Inflammatory Disease. Current Topics in Medicinal Chemistry, 2009. 9(7): p. 611-622.
12. Geretti, E. and M. Klagsbrun, Neuropilins: Novel Targets for Anti-Angiogenesis Therapies. Cell Adhesion & Migration, 2007. 1(2): p. 56-61.
13. Walsh, N., et al., Humanized mouse models of clinical disease. Annual review of pathology, 2017. 12: p. 187-215.
14. Avila, G., et al., FKBP12 binding to RyR1 modulates excitation-contraction coupling in mouse skeletal myotubes. J Biol Chem, 2003. 278(25): p. 22600-8.
15. Kojima, I., J. Medina, and N. Yuko, Role of the glucose-sensing receptor in insulin secretion: KOJIMA et al. Vol. 19. 2017. 54-62.
16. Sithanandam, G. and L.M. Anderson, The ERBB3 receptor in cancer and cancer gene therapy. Cancer gene therapy, 2008. 15(7): p. 413-448.
17. Al-Haddad, R., et al., Epigenetic changes in diabetes. Neuroscience Letters, 2016. 625(Supplement C): p. 64-69.
18. Parameswaran, N. and S. Patial, Tumor Necrosis Factor-α Signaling in Macrophages. Critical reviews in eukaryotic gene expression, 2010. 20(2): p. 87-103.
19. Siggs, O.M., et al., Mutation of Fnip1 is associated with B-cell deficiency, cardiomyopathy, and elevated AMPK activity. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(26): p. E3706-E3715.
20. Kallionpää, H., et al., Innate Immune Activity Is Detected Prior to Seroconversion in Children With HLA-Conferred Type 1 Diabetes Susceptibility. Diabetes, 2014. 63(7): p. 2402.
21. Hassan, G.A., et al., Role of immune system modulation in prevention of type 1 diabetes mellitus. Indian Journal of Endocrinology and Metabolism, 2012. 16(6): p. 904-909.
22. Castro, E. and R. Eeles, The role of BRCA1 and BRCA2 in prostate cancer. Asian Journal of Andrology, 2012. 14(3): p. 409-414.
23. Robertson, R.P., Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem, 2004. 279(41): p. 42351-4.
24. Blaser, H., et al., TNF and ROS Crosstalk in Inflammation. Trends in Cell Biology, 2016. 26(4): p. 249-261.
25. Li, Z., et al., The Role of Semaphorin 3A in Bone Remodeling. Frontiers in Cellular Neuroscience, 2017. 11: p. 40.
26. Romagnani, S., Type 1 T helper and type 2 T helper cells: Functions, regulation and role in protection and disease. International Journal of Clinical and Laboratory Research, 1992. 21(2): p. 152-158.
27. Lopez-Castejon, G. and D. Brough, Understanding the mechanism of IL-1β secretion. Cytokine & Growth Factor Reviews, 2011. 22(4): p. 189-195.
28. Maser, R.E., et al., Cardiovascular disease and arterial calcification in insulin-dependent diabetes mellitus: interrelations and risk factor profiles. Pittsburgh Epidemiology of Diabetes Complications Study-V. Arteriosclerosis, Thrombosis, and Vascular Biology, 1991. 11(4): p. 958.
29. Groop, P.-H., et al., The Presence and Severity of Chronic Kidney Disease Predicts All-Cause Mortality in Type 1 Diabetes. Diabetes, 2009. 58(7): p. 1651-1658.
30. Holl, R.W., et al., Diabetic retinopathy in pediatric patients with type-1 diabetes: Effect of diabetes duration, prepubertal and pubertal onset of diabetes, and metabolic control. The Journal of Pediatrics, 1998. 132(5): p. 790-794.
31. Gancheva, S., et al., Variants in Genes Controlling Oxidative Metabolism Contribute to Lower Hepatic ATP Independent of Liver Fat Content in Type 1 Diabetes. Diabetes, 2016. 65(7): p. 1849.
32. Inui, M., et al., USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nature Cell Biology, 2011. 13: p. 1368.
33. Tanizawa, Y., et al., Unregulated Elevation of Glutamate Dehydrogenase Activity Induces Glutamine-Stimulated Insulin Secretion. Diabetes, 2002. 51(3): p. 712.
34. Khan, D., et al., Reversible induction of translational isoforms of p53 in glucose deprivation. Cell Death and Differentiation, 2015. 22(7): p. 1203-1218.
35. Tanaka, Y., et al., Overexpression of acetyl CoA carboxylase β exacerbates podocyte injury in the kidney of streptozotocin-induced diabetic mice. Biochemical and Biophysical Research Communications, 2018. 495(1): p. 1115-1121.
36. Shin, G.-C., et al., Hepatitis B virus–triggered autophagy targets TNFRSF10B/death receptor 5 for degradation to limit TNFSF10/TRAIL response. Autophagy, 2016. 12(12): p. 2451-2466.
37. Lamb, J., et al., The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science, 2006. 313(5795): p. 1929.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *