帳號:guest(18.216.86.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):田剛銘
作者(外文):Tien, Kang-Ming
論文名稱(中文):無位置感測切換式整流器開關式磁阻馬達驅動系統之開發
論文名稱(外文):DEVELOPMENT OF POSITION SENSORLESS SWITCH-MODE RECTIFIER FED SWITCHED-RELUCTANCE MOTOR DRIVES
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):許源浴
陳盛基
劉添華
口試委員(外文):Hsu, Yuan-Yih
Chen, Seng-Chi
Liu, Tian-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061507
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:153
中文關鍵詞:開關式磁阻馬達換相移位主動式功率濾波器開關式整流器功因校正升壓反轉再生煞車無位置感測控制
外文關鍵詞:switched-reluctance motorcommutation shiftactive power filterswitch-mode rectifierpower factor correctionvoltage boostingreversibleregenerative brakingsensorless control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:742
  • 評分評分:*****
  • 下載下載:31
  • 收藏收藏:0
  本論文旨在開發不同切換式整流器前級供電之開關式磁阻馬達驅動系統,並提出其無位置感測控制機構。在探討開關式磁阻馬達之基礎及一些相關電力電子技術後,建構一標準型開關式磁阻馬達驅動系統,藉由適當之移位、電流與速度控制,獲得良好之加/減速、反轉、動態響應等特性。在高速運轉情況下,應用直流鏈升壓降低反電動勢對電流追控之影響。接著提出窄波電壓注入之無位置感測控制機構,並以之建構無位置感測開關式磁阻馬達驅動系統。窄波電壓注入機構、響應電流偵測及信號處理機構均妥以設計,以得可媲美於標準型開關式磁阻馬達驅動系統之驅控性能。
  接著開發一標準三相全橋式升壓型切換式整流器,作為馬達驅動系統之前級轉換器。在良好交流入電電力品質下,具可升壓直流鏈電壓以增強馬達系統於高速驅控特性,而再生煞車回收能量可成功送回市電。
  最後,本論文建構一主動功率濾波器輔助之三相單開關升壓式不連續電流切換式整流器,作為馬達驅動系統之前級轉換器,具有標準三相全橋式升壓切換式整流器供電驅動系統之完全功能,然此型前級轉換器具有較高之功率元件額定利用率。
  This thesis develops the switched-reluctance motor (SRM) drives with different switch-mode rectifier (SMR) front-ends and proposes a SRM position sensorless control scheme. After comprehending the basics of a SRM drive and some related power electronic technologies, a standard SRM drive is first established. Through proper commutation, current and speed controls, it possesses good driving performances, including acceleration/deceleration, reversible and regenerative braking operations. Under higher speeds, the DC-link boosting is further applied to reduce the effects of back electromotive force (EMF) on the winding current response. Next, a rotor position estimation scheme based on narrow pulse voltage injection is developed and applied for constructing a position sensorless SRM drive. The pulse voltage injection scheme, the resulted current detecting and signal conditioning schemes are all adequately designed to let its driving characteristics being comparable to those of standard SRM drive.
  Second, a three-phase full-bridge boost switch-mode rectifier (SMR) is established to be the front-end of the SRM drive. Under good line drawn power quality, the DC-link voltage of the SRM drive is boostable to enhance the SRM driving performance in higher speeds. Moreover, the recovered regenerative braking energy can be successfully sent back to the mains.
  Third, another SMR front-end SRM drive is proposed and comparatively evaluated. This AC/DC front-end consists of a three-phase single-switch (3P1SW) discontinuous conduction mode (DCM) boost SMR and a three-phase shunt active power filter (APF). All functions of the standard full-bridge SMR fed SRM drive are preserved by this type of SRM drive. However, the rating analysis demonstrates that the higher power device rating utilization is possessed.
ABSTRACT i
ACKNOLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES viii
LIST OF TABLES xvii
CHAPTER 1 INTRODCUTION 1
CHAPTER 2 SWITCH-MODE RECTIFIER FED SWITCHED-
RELUCTANCE MOTOR DRIVE 6
2.1 Introduction 6
2.2 SMR-fed Motor Drive 6
2.3 Switched-Reluctance Motor 7
A. Motor Structure 7
B. Physical Modeling 8
C. Motor and Generator Operations 9
D. Dynamic Modeling 10
2.4 Position Sensorless Control 12
2.5 SRM Converters 12
A. Asymmetrical Bridge Converter 13
B. Miller’s Converter 13
C. Modified Miller’s Converter 14
2.6 Front-End Converters 15
A. DC/DC Converters 15
B. AC/DC Converters 16
2.7 Possible AC/DC Converters for Motor Drives 19
2.8 The De-rated Characteristics of Various AC/DC Converters 20
2.9 Active Power Filters 21
2.10 The Developed SRM Drive System and Problem Statements 23
CHAPTER 3 STANDARD SWITCHED-RELUCTANCE MOTOR DRIVES 25
3.1 Introduction 25
3.2 Standard SRM Drive 25
A. System Configuration 25
B. SRM-PMSG Set 26
C. Converter Circuit 27
D. DSP-based Digital Control Environment 28
E. Sensing and Interfacing Circuits 28
3.3 Current Control Scheme 32
3.4 Speed Control Scheme 33
A. Dynamic Modeling 33
B. Design of Speed Feedback Controller 36
3.5 Experimental Evaluation 37
A. Effectiveness of Commutation Shift and Voltage Boosting 37
B. Dynamic Speed Responses 40
C. Acceleration/deceleration and Reversible Operations 41
CHAPTER 4 POSITION SENSORLESS SWITCHED- RELUCTANCE MOTOR DRIVE BASED ON NARROW VOLTAGE PULSE INJECTION 48
4.1 Introduction 48
4.2 Principle of Signal Injected Position Sensorless Control 48
A. Some Behaviors of SRM Related to Rotor Position 48
B. Narrow Voltage Pulse Injection Position Sensorless Control Concept 49
4.3 The Developed Position Sensorless SRM Drive 52
A. System Configuration 52
B. Determination of Key Parameters 54
C. Controller Design 55
4.4 Experimental Results 55
A. Winding Current Tracking Characteristics under Different DC-link Voltages 55
B. Winding Current Tracking Responses 56
C. Speed Dynamic Responses 61
D. Reversible Operation Characteristics 62
CHAPTER 5 THREE-PHASE FULL-BRIDGE SWITCH-MODE RECTIFIER POWERED SWITCHED-RELUCTANCE MOTOR DRIVE 68
5.1 Introduction 68
5.2 Three-phase Full-bridge Boost SMR with Resistive Load 68
A. Power Circuit 68
B. Controller Design 69
C. Experimental Results 74
5.3 Three-phase Full-bridge Boost SMR Powered Standard SRM Drive 78
A. Control Schemes 78
B. Steady-state Characteristics 79
C. Dynamic Characteristics 83
D. Reversible Operation 85
E. Regenerative Braking 85
5.4 Three-phase Full-bridge Boost SMR Powered Sensorless SRM Drive 88
A. Control Schemes 88
B. Steady-state Characteristics 88
C. Dynamic Characteristics 93
CHAPTER 6 THREE-PHASE SINGLE-SWITCH DCM BOOST SMR-FED SWITCHED-RELUCTANCE MOTOR DRIVE 96
6.1 Introduction 96
6.2 Comparative Rating Analyses of AC/DC Converters 96
A. Three-phase Full-bridge SMR 96
B. Three-phase Single-switch DCM Boost SMR 97
C. APF Assisted Three-phase Single-switch DCM Boost SMR 98
D. Summary 99
6.3 Three-phase Single-switch DCM Boost SMR 99
A. System Configuration and Operation 99
B. Power Circuit Design 101
C. Voltage Controller Design 102
D. Experimental Results 104
6.4 Three-phase Single-switch DCM Boost SMR fed SRM Drive 108
A. System Configuration 108
B. Control Schemes 109
C. Steady-state Characteristics 110
D. Dynamic Characteristics 114
E. Reversible Operation 116
6.5 APF Assisted Three-phase Single-switch DCM Boost SMR 118
A. System Configuration and Parameters 118
B. SCRs Driver Circuit 118
C. Control Schemes 120
D. Experimental Results 121
6.6 APF Assisted Three-phase Single-switch DCM Boost SMR fed SRM Drive 129
A. System Configuration 129
B. Control Schemes 129
C. Steady-state Characteristics 129
D. Dynamic Characteristics 137
E. Reversible Operation 139
F. Regenerative Braking 141
CHAPTER 7 CONCLUSIONS 144
REFERENCES 146


REFERENCES
A. Fundamentals of SRM
[1] T. J. E. Miller, Switched Reluctance Motors and Their Control, Oxford: Clarendon Press, 1993.
[2] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[3] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[4] A. Lebsir, A. Bentounsi, R. Rebbah, and S. Belakehal, “Comparative study of PMSM and SRM capabilities,” in Proc. IEEE POWERENG, 2013, pp. 760-763.
[5] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1 no. 3, pp. 245-254, 2015.
[6] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol.3, no. 1, pp. 58-75, 2017.
[7] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam, and K. N. Srinivas, “Switched-reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, 2008.
[8] N. Schofield, S. A. Long, D. Howe, and M. McClelland, “Design of a switched reluctance machine for extended speed operation,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 116-122, 2009.
[9] P. C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: Concept to implementation, ” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, 2010.
[10] T. Ishikawa and H. Dohmeki, ”The fundamental design technique of switched reluctance motors, and comparison with PMSM” in Proc. IEEE ICEM, 2012, pp. 500-504.
[11] K. Ohyama, Y. Nakazawa, K. Nozuka, and H. Fujii “Design of high efficient switched reluctance motor for electric vehicle,” in Proc. IEEE IECON, 2013, pp. 7325-7330.
[12] N. Matsui, T. Kosaka, N. Minoshima, and Y. Ohdachi, “Development of SRM for spindle motor system,” in Proc. IEEE IAS, 1998, vol. 1, pp. 580-585.
[13] M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
[14] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang, and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012.
[15] S. M. Castano, J. M. Altes, and A. Emadi, “Development and performance analysis of a switched reluctance motor drive for an automotive air-conditioning system,” IEEE Trans. Transport. Electrific., pp. 1-8, 2016.
[16] B. Singh, A. K. Mishra, and R. Kumar, “Solar powered water pumping system employing switched reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3949-3957, 2016.
[17] I-A. Viorel, L. Szabo, L. Lowenstein, and C. Stet, “Integrated starter-generators for automotive applications,” Acta Electrotehnica., vol. 45, no. 3, pp. 255-260, 2004.
[18] L. Kolomeisev, D. Kraynov, S. Pakhomin, F. Rednov, E. Kallenbach, V. Kireev, T. Schneider, and J. Bocker, “Control of a linear switched reluctance motor as a propulsion system for autonomous railway vehicles,” in Proc. EPE-PEMC, 2008, pp. 1598-1603.
[19] A. Omekanda, B. Lequesne, H. Klode, S. Gopalakrishnan, and I. Husain, “Switched reluctance and permanent magnet brushless motors in highly dynamic situations: a comparison in the context of electric brakes,” IEEE Ind. Appl. Mag., vol. 15, no. 4, pp. 35-43, 2009.
[20] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, 2013.
[21] K. W. Hu, P. H. Yi and C. M. Liaw, “An EV SRM drive powered by battery/super-capacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, 2015.
[22] R. Krishnan, D. Blanding, A. Bhanot, A. M. Staley, and N. S. Lobo, “High reliability SRM drive system for aerospace applications,” in Proc. IEEE IECON, 2003, vol. 2, pp. 1110-1115.
[23] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, 2017.
[24] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron, vol. 23, no. 1, pp. 445-454, 2008.
[25] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron, vol. 26, no. 9, pp. 2512-2527, 2015.
B. SRM Converters
[26] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
[27] J. Ye and A. Emadi, “Power electronic converters for 12/8 switched reluctance motor drives: a comparative analysis,” IEEE Trans. Transport. Electrific., pp. 1-6, 2014.
[28] K. W. Hu, J. C. Wang, T.S. Lin and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 273-284, 2015.
[29] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
[30] S. Mir, I. Husain, and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
[31] K. Tomczewski and K. Wrobel, “Improved C-dump converter for switched reluctance motor drives,” IET Power Electron., vol. 7, Iss. 10, pp. 2628-2635, 2013.
[32] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[33] H. L. Huy, K. Slimani, and P. Viarouge, “A current-controlled quasi-resonant converter for switched-reluctance motor,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp. 355-362, 1991.
[34] Y. Murai, J. Cheng, and M. Yoshida, “New soft-switched reluctance motor drive circuit,” in Proc. IEEE IAS, 1997, vol. 1, pp. 676-681.
[35] C. K. Pan, A DSP-based soft-switching converter-fed switched reluctance motor drive, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2003.
[36] C. M. Wang, Development of switched-reluctance motor drive with three-phase switch-mode rectifier front-end, Master Thesis, Department of Electrical Engineering , National Tsing Hua University, ROC, 2010.
[37] Y. G. Dessouky, B. W. Williams, and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
[38] A. Dahmane, F. Meebody, and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” in Proc. IEEE PESC, 2001, vol. 2, pp. 844-849.
[39] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[40] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[41] T. Gopalarathnam and H. A. Toliyat, “A high power factor converter topology for switched reluctance motor drives,” in Proc. IEEE IAS, 2002, vol. 3, pp. 1647-1652.
[42] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[43] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
C. Modeling and Dynamic Controls
[44] V. Vujicic and S. N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
[45] B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
[46] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000.
[47] K. I. Hwu, Development of a switched reluctance motor drive, Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2001.
[48] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
[49] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
[50] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen, and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[51] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[52] F. Peng, J. Ye, and A. Emadi, “A digital PWM current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7087-7098, 2016.
[53] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong and C. M. Liaw, “A current control scheme with back-EMF cancellation and tracking error adapted commutation shift for switched- reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, 2016.
[54] L. Ben Amor, L.-A. Dessaint, and O. Akhrif, “Switched reluctance motor torque control with peak current minimization,” in Proc. IEEE IECON, 2004, vol. 2, pp. 1885-1890.
[55] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
[56] G. John and A. R. Eastham, “Robust speed control of a switched reluctance drive,” in Proc. IEEE CCECE, 1993, vol. 1, pp. 317-320.
[57] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[58] C. Lucas, M. M. Shanehchi, P. Asadi, and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[59] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
[60] M. A. A. Morsy, M. S. A. Moteleb, and H. T. Dorrah, “Development of robust fuzzy sliding mode control technique for nonlinear drive systems,” in Proc. IEEE MHS, 2006, pp. 1-6.
[61] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[62] D. E. Cameron, J. H. Lang, and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992.
[63] J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elect. Power Appl., vol. 153, no. 3, pp. 348-360, 2006.
[64] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Elect. Power Appl., vol. 4, no. 5, pp. 380-396, 2010.
[65] V. P. Vujicic, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
D. Commutation Instant Tuning
[66] R. Orthmann and H. P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. IET EPE, 1993, vol. 6, pp. 20-25.
[67] J. J. Gribble, P. C. Kjaer, C. Cossar, and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
[68] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen, and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[69] M. Rodrigues, P. J. Costa Branco, and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
[70] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[71] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[72] Y. Sozer and D. A. Torrey, “Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors,” IET Power Elect. Appl., vol. 1, no. 3, pp. 395-401, 2007.
[73] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[74] K. W. Hu, Y. Y. Chen, T. S. Lin and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[75] H. N. Huang, K. W. Hu and C. M. Liaw, “A switch-mode rectifier fed switched-reluctance motor drive with dynamic commutation shifting using DC-link current,” IET Electric Power Applications, vol. 11, no. 4, pp. 640-652, 2017.
E. Switch-mode Rectifiers and Active Power Filters
[76] M. Hengchun, F. C. Y. Lee, D. Boroyevich, and S. Hiti, “Review of high performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[77] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[78] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems– part I” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[79] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems– part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[80] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, 1998.
[81] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[82] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Real-time implementation of a discrete nonlinearity compensating multiloops control technique for a 1.5-kW three-phase/switch/ level Vienna converter,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1225-1234, 2008.
[83] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal model of three-phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008.
[84] H. Chen, N. David and D. C. Aliprantis, “Analysis of permanent-magnet synchronous generator with Vienna rectifier for wind energy conversion system,” IEEE Trans. Sustain. Energy., vol. 4, no. 1, pp. 154-163, 2013.
[85] Flores-Bahamonde, F., Valderrama-Blavi, H., Martinez-Salamero, L., Maixe-Altes, J., and Garcia, G., “Control of a three-phase AC/DC VIENNA converter based on the sliding mode loss-free resistor approach,” IET Power Electron., vol. 7, issue 5, pp. 1073-1082, 2014.
[86] K. W. Hu and C. M. Liaw, “A position sensorless surface-mounted permanent-magnet synchronous generator and its operation control,” IET Power Electron., vol. 8, no. 9, pp. 1636-1650, 2015.
[87] B. Singh, K. Al-Haddad, and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 960-971, 1999.
[88] M. El-Habrouk, M.K. Darwish, and P. Mehta, “Active power filters: a review,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 403-413, 2000.
[89] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, Wiley-IEEE Press, 2007.
[90] S. Rahmani, N. Mendalek, and K. Al-Haddad, “Experimental design of a nonlinear control technique for three-phase shunt active power filter,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3364-3375, 2010.
[91] M. Sarra, J. Gaubert, A. Chaoui, and F. Krim, “Two control strategies comparison of a three phase shunt active power filter for power quality improvement with experimental validation,” in Proc. IEEE EPE, 2011, pp. 1-11.
[92] T. C. Hsu, Development of a switched-reluctance motor drive with active power factor filter assisted three-phase single-switch boost switch-mode rectifier, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2016.
F. Position Sensorless Control
[93] M. Ehsani and B. Fahimi, “Elimination of position sensors in switched reluctance motor drives: state of the art and future trends,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 40-47, 2002.
[94] J. Ye, B. Bilgin, and A. Emadi, “Elimination of mutual flux effect on rotor position estimation of switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1499-1512, 2015.
[95] E. Bassily, “New rotor-position estimation technique for sensorless switched reluctance motor,” in Proc. IEEE AMC, 2008, pp. 399-404.
[96] P. Bishop, A. Khalil, and I. Husain, “Low level amplitude modulation based sensorless operation of a switched reluctance motor,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3347-3352.
[97] E. Kayikci, M. C. Harke, and R. D. Lorenz, “Load invariant sensorless control of a SRM drive using high frequency signal injection,” in Proc. IEEE IAS, 2004, vol. 3, pp. 1632-1637.
[98] E. Kayikci and R. D. Lorenz, “Self-sensing control of a four phase switched reluctance drive using high frequency signal injection including saturation effects,” in Proc. IEEE IEMDC, 2009, pp. 611-618.
[99] E. Ofori, T. Husain, Y. Sozer, and I. Husain, “A pulse-injection-based sensorless position estimation method for a switched reluctance machine over a wide speed range,” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3867-3876, 2015.
[100] G. Gallegos-Lopez, P. C. Kjaer, and T. J. E. Miller, “A new sensorless method for switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 832-840, 1998.
[101] T. Wakasa, H. J. Guo, and O. Ichinokura, “A simple position sensorless driving system of SRM based on new digital PLL technique,” in Proc. IEEE IECON, 2002, vol. 1, pp. 502-507.
[102] H. Gao, F. R. Salmasi, and M. Ehsani, “Sensorless control of SRM at standstill,” in Proc. IEEE APEC, 2001, vol. 2, pp. 850-856.
[103] M. Krishnamurthy, C. S. Edrington, and B. Fahimi, “Prediction of rotor position at standstill and rotating shaft conditions in switched reluctance machines,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 225-233, 2006.
[104] A. Komatsuzaki, T. Bamba, and I. Miki, “A position sensorless speed control for switched reluctance motor at low speeds,” in Proc. IEEE PES, 2007, pp. 1-7.
[105] H. J. Guo, M. Takahashi, T. Watanabe, and O. Ichinokura, “A new sensorless drive method of switched reluctance motors based on motor's magnetic characteristics,” IEEE Trans. Magnetics, vol. 37, no. 4, pp. 2831-2833, 2001.
[106] H. J. Guo, W. B. Lee, T. Watanabe, and O. Ichinokura, “An improved sensorless driving method of switched reluctance motors using impressed voltage pulse,” in Proc. IEEE PCC, 2002, vol. 3, pp. 977-980.
[107] S. Kachapornkul, P. Somsiri, N. Chayopitak, K. Tungpimolrut, R. Pupadubsin, and P. Jitkreeyan, “Sensorless control of switched reluctance motor for three-phase full-bridge inverter drive,” in Proc. IEEE ICEMS, 2008, pp. 3321-3326.
[108] G. Pasquesoone, R. Mikail, and I. Husain, “Position estimation at starting and lower speed in three-phase switched reluctance machines using pulse injection and two thresholds,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1724-1731, 2011.
[109] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[110] Y. Y. Chen, Development of standard and position sensorless switched-reluctance motor drive with power factor corrected front-end, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2014.
G. Others
[111] “TMS320F28335 digital signal processors data manual,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, August 29, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *