帳號:guest(18.227.228.238)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王冠鈞
作者(外文):Wang, Kuan-Chun
論文名稱(中文):具聯網及能源收集功能之蓄電池/超電容供電之電動車永磁同步馬達驅動系統
論文名稱(外文):A BATTERY/SUPERCAPACITOR POWERED EV PMSM DRIVE WITH GRID CONNECTED AND ENERGY HARVESTING FUNCTIONS
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):鐘太郎
胡國英
曾萬存
張忠良
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061506
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:189
中文關鍵詞:內藏型永磁同步馬達電動車蓄電池超電容介面轉換器再生煞車無位置感測電網至車輛車輛至家庭車輛至電網切換式整流器能源收集太陽能光伏
外文關鍵詞:IPMSMEVbatterySCinterface converterregenerative brakingsensorlessG2VV2HV2Gswitch-mode rectifierenergy harvestingPV
相關次數:
  • 推薦推薦:0
  • 點閱點閱:499
  • 評分評分:*****
  • 下載下載:66
  • 收藏收藏:0
本論文旨在開發一電動車內藏型永磁同步馬達驅動系統並具有電網至車輛/車輛至家庭/車輛至電網和能源收集等功能。電池經由一全橋式直流/直流轉換器對馬達驅動系統供電。除雙向之電力潮流,在廣速度範圍下,直流鏈電壓可低或高於電池電壓。超電容經由一單臂雙向升壓/降壓直流/直流轉換器介接至直流鏈。藉由適合之電壓配置,超電容可快速地放電協助馬達加速以及吸收再生煞車之能量。為了探索無位置感測控制在電動車之運用潛力,發展可變換頻率之高頻注入無位置感測控制電動車馬達驅動系統,可降低內藏型永磁同步馬達之固有反電動勢諧波之效應。特性比較評估顯示,所建標準與無位置感測馬達驅動系統均具良好的驅動性能包括加速/減速、反轉和再生煞車。
在閒置下,電網至車輛/車輛至家庭/車輛至電網等操作可利用馬達驅動系統內建元件達成。在電網至車輛操作上,以單相或三相切換式整流器建構之車載充電器,可由電網充電而具良好之交流入電電力品質。至於車輛至家庭/車輛之電網之操作,車載電池可以藉由所建構之單相三線變頻器,供電給家用電器或回送電網。藉由所提控制架構,於未知及非線性負載下,具良好之交流電壓波形。
對於所建之能源收集架構,在任何情況下,車頂之太陽能光伏可直接對電池充電。於閒置時,家庭屋頂之太陽電池、可取用之直流或交流電源均可以透過所建之無橋式升壓型切換式整流器對電池進行補助充電。
This thesis develops an electric vehicle (EV) interior permanent magnet synchronous motor (IPMSM) drive with grid-to-vehicle (G2V)/vehicle-to-home (V2H)/vehicle-to-grid (V2G) and energy harvesting capabilities. The motor drive is powered from the battery via an H-bridge DC/DC converter. In addition to bidirectional power flow, the DC-link voltage can be varied below or above the battery voltage in wide speed range. The SC is interfaced to the DC-link through a one-leg bidirectional boost/buck DC/DC converter. Through proper voltage window profiling, the SC can quickly discharge energy to assist the motor rapid acceleration and store the recovered regenerative braking energy. To explore the potential of sensorless controlled motor in EV driving application, a high-frequency injection (HFI) position sensorless controlled EV IPMSM drive with changed injection frequencies is developed to reduce the inherent back-EMF harmonic effects. The comparative evaluation indicates that good driving performances are preserved for both the established standard and sensorless controlled motor drives, including acceleration/deceleration, reversible and regenerative braking operations.
In idle condition, G2V/V2H/V2G operations can be conducted using the embedded motor drive components. In G2V operation, the on-board single-phase or three-phase switch-mode rectifier (SMR) based charger is formed to perform battery charging from utility grid with power factor correction. Conversely in V2H/V2G discharging operations, the on-board battery can discharge stored energy to home appliances or grid via the developed single-phase three-wire (1P3W) inverter. Good AC voltage waveforms under unknown and nonlinear loads are obtained by the proposed control schemes.
As to the established energy harvesting scheme, the EV roof PV can directly charge the battery in any conditions. In idle case, the house roof PV, the accessible DC source or single-phase AC source can charge the battery via the constructed bridgeless boost SMR.
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES xvi
LIST OF SYMBOLS xviii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BASICS OF PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVES AND ELECTRIC VEHICLES 7
2.1 Introduction 7
2.2 Overview of Electric Vehicles 7
A. Classifications of EVs 7
B. Power Control Units 8
2.3 Introductory Permanent-Magnet Synchronous Motor Drives 10
A. Motor Structures 11
B. Physical Modeling 13
C. Parameter Estimation of the Employed PMSM 15
D. Effects of Commutation Shift 18
2.4 EV Emulated Load 19
2.5 Energy Storage Devices 22
A. Battery 22
B. Supercapacitor 22
2.6 Electric Vehicle as a Movable Energy Storage 24
2.7 Interface Converters 26
A. DC/DC Converters 26
B. Switched-Mode Rectifiers . 27
C. Single-phase Inverters 29
2.8 Some EV Bidirectional Chargers 31
2.9 The Developed EV IPMSM Drive 34
CHAPTER 3 STANDARD AND POSITION SENSORLESS ELECTRIC VEHICLE IPMSM DRIVES 37
3.1 Introduction 37
3.2 Configuration and Functional Description of the Developed EV IPMSM Drive
37
A. System Configuration 38
B. Functional Descriptions 39
3.3 Establishment of IPMSM Drive 40
A. Power Circuit 40
B. Control Schemes of IPMSM Drive 41
3.4 Battery Interface DC/DC Converter 44
A. Power Circuit 44
B. Design of Power Circuit Components 46
C. Control Schemes 47
D. Experimental Performance Evaluation for the Front-end DC/ DC Converter
55
3.5 Experimental Evaluation of the Established EV IPMSM Drive 56
A. Starting Characteristics 56
B. Steady-state Characteristics 56
C. Speed Dynamic Response 58
D. Some Key Issues in Performance Enhancement 59
E. Acceleration/Deceleration and Reversible Characteristics 62
F. Programmed Speed Pattern Evaluation 65
G. Adjustable DC-link Voltage 67
3.6 EV IPMSM Drive with SC Energy Support 76
A. The Role of SC 76
B. SC Bidirectional Interface Converter 77
C. Experimental Verification 79
3.7 Dynamic Braking 85
3.8 The Developed Position Sensorless EV IPMSM Drive 87
A. System Configuration 87
B. Back-EMF Harmonic Effects 89
C. Current and Speed Control Schemes 90
3.9 Experimental Evaluation of Position Sensorless EV IPMSM Drive 94
A. Starting Characteristics 94
B. Steady-state Characteristics 96
C. Dynamic Speed Response 98
D. Acceleration/Deceleration Characteristics 101
E. Effects of Fixed-frequency and Varied-frequency Injected Signals 103
CHAPTER 4 MOVABLE ENERGY STORAGE APPLICATIONS OF THE ESTABLISHED EV IPMSM DRIVE 106
4.1 Introduction 106
4.2 G2V PFC Charging Operation 106
4.2.1 System Configuration 106
4.2.2 Single-phase SMR Based On-board Charger 108
A. Single-phase Boost SMR 108
B. Measure Results 111
4.2.3 Three-phase SMR Based on-board Charger 113
A. Three-phase Boost SMR 113
B. Measured Results 116
4.3 The V2H and V2G Functions of the Developed EV drive
119
4.4 Autonomous V2H Operation 121
A. Power Circuit 122
B. Modeling of 1P3W Inverter 122
C. Control Schemes 124
D. Experimental Results 126
4.5 Grid-connected V2G Operation 134
A. Functional Description 134
B. Control Schemes 135
C. Experimental Results 137
CHAPTER 5 THE DEVELOPED EV ENERGY HARVESTING SYSTEM
152
5.1 Introduction 152
5.2 System Configuration 152
5.3 Energy Harvesting from EV Roof PV 153
A. Power Circuit 154
B. Control Scheme 156
C. Experimental Result 156
5.4 Energy Harvesting from the Plug-in Sources 157
A. H-bridge DC/DC Converter 157
B. Single-phase Bridgeless Boost SMR 160
C. Plug-in SMR Based Auxiliary Battery Charger with AC Source Input 167
D. Plug-in SMR Based Auxiliary Battery Charger with DC Source Input 170
CHAPTER 6 CONCLUSIONS 176
REFERENCES 178
A. Electric Vehicles
[1] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
[2] M. Bertoluzzo and G. Buja, “development of electric propulsion system for light electric vehicles,” IEEE Trans. Ind. Informat., vol., no. 3, pp. 428-435, 2011.
[3] K. Rajashekara, “Present status and future trends in electric vehicle propulsion technologies,” IEEE Trans. Power Electron., vol. 1, no. 1, pp. 3-10, 2013.
[4] B. Frieske, M. Kloetzke, and F. Mauser, “Trends in vehicle concept and key technology development for hybrid and battery electric vehicles,” in Proc. IEEE EVSE, 2013, pp. 1-12.
[5] S. Kachapornkul, S. Kreuawan, N. chayopitak, P. Somsiri, P. Champa, P. Jitkreeyan, N. Nulek, Y. Thinphowong, and S. Karukanan, “A design of switch reluctance motor and drive system for high performance electric motorcycle,” in Proc. IEEE ICEMS, 2015, pp. 888-893.
[6] M. Corno and S. M. Savaresi, “Design and control of an all-in-the-wheel assisted kick scooter,” IEEE Trans. Mechatronics, vol. 21, no. 4, pp. 1858-1867, 2016.
[7] K. Tomoda, Y. Aisaka, T. Fukuzawa, N. Hoshi, N. Katayama, A. Yoshizaki, and K. Hirata, “Stabilization effect on hydrogen pressure for fuel cell fueled by sodium tetrahydroborate with multiple power converter control,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 1200-1209, 2017.
B. Electric Vehicle Motors
[8] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, “Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322-2332, 2012.
[9] M. Arata, Y. Kurihara, D. Misu, and M. Matsubara, “EV and HEV motor development in TOSHIBA,” in Proc. IEEE IPEC, 2014, pp. 1874-1879.
[10] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
C. Permanent-Magnet Synchronous Motor Drives
Equivalent circuit modeling and parameter estimation
[11] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
[12] J. Y. Lee, S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur, “Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1303-1306, 2006.
[13] K. Liu, Z. Q. Zhu, and D. A. Stone, “Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5902-5913, 2013.
[14] Y. S. Park, M. M. Koo, S. M. Jang, J. Y. Choi, and D. J. You, “Dynamic characteristic analysis of interior permanent magnet synchronous motor considering varied parameters by outer disturbance based on electromagnetic field analysis,” IEEE Trans. Magn., vol. 50, no. 11, 2014.
Direct torque control
[15] S. Kar and S. K. Mishra, “Direct torque control of permanent magnet synchronous motor drive with a sensorless initial rotor position estimation scheme,” in Proc. IEEE APCET, 2012, pp. 1-6.
[16] M. Preindl and S. Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, part 1: maximum torque per ampere operation,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 1912-1921, 2013.
[17] J. S. Lee and R. D. Lorenz, “Deadbeat direct torque and flux control of IPMSM drives using minimum time ramp trajectory method at voltage and current limits,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 3795-3804, 2014.
[18] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power. Electron., vol. 31, no. 5, pp. 3728-3737, 2016.
[19] J. S. Lee and R. D. Lorenz, “Robustness analysis of deadbeat-direct torque and flux control for IPMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2775-2784, 2016.
Current control
[20] A. Lekshmi, R. Sankaran, and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, pp. 2876-2881.
[21] N. Prabhakar and M. K. Mishra, “Dynamic hysteresis current control to minimize switching for three-phase four-leg VSI topology to compensate nonlinear load,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 1935-1942, 2010.
[22] A. M. Hava and E. Un, “Performance analysis of reduced common-mode voltage PWM methods and comparison with standard PWM methods for three-phase voltage source inverters,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 241-252, 2009.
[23] M. C. Chou, C. M. Liaw, S. B. Chien, F. H. Shieh, J. R. Tsai, and H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 58-74, 2011.
[24] H. T. Moon, H. S. Kim, and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
[25] W. Joerg, “Predictive current control using identification of current ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4316-4353, 2008.
[26] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
[27] P. Cortes, J. Rodriguez, C.Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1323-1325, 2012.
Speed control
[28] M. Kadjoudj, A. Golea, N. Golea, and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
[29] T. Pajchrowski and K. Zawirski, “Robust speed and position control based on neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10.
[30] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
[31] H. H. Choi, V. Q. Leu, Y. S. Choi, and J. W. Jung, “Adaptive speed controller design for a permanent magnet synchronous motor,” IET Elect. Power Appl., vol. 5, no .5, pp. 457-464, 2011.
[32] J. W. Jung, V. Q. Leu, T. D. Do, E. K. Kim, and H. H. Choi, “Adaptive PID speed controller design for permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 30, no .2, pp. 900-908, 2015.
[33] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007-1015, 2013.
Field-weakening control
[34] T. Miyajima, H. Fujimoto, and M. Fujitsuna, “Direct voltage vector control for field weakening operation of PM machines,” in Proc. IEEE ECCE, 2011, pp. 1392-1397.
[35] S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
[36] D. Strojan, D. Drevensek, Z. Plantic, B. Grcar, and G. Stumberger, “Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2390-2401, 2012.
[37] S. Chaithongsuk, B. Nahid-Mobarakeh, J. P. Caron, N. Takorabet, and F. Meibody-Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
[38] A. Ebrahimi, M. Maier, and N. Parspour, “Analysis of torque behavior of permanent magnet synchronous motor in field-weakening operation,” in Proc. IEEE PECI, 2013, pp. 120-124.
[39] S. Bolognani, S. Calligaro, and R. Petrella, ‘‘Adaptive flux-weakening controller for interior permanent magnet synchronous motor drives,’’ IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 236-248, 2014.
[40] M. Preindl and S. Bolognani, ‘‘Optimal state reference computation with constrained MTPA criterion for PM motor drives,’’ IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4524-4535, 2015.
Voltage boosting and pulse amplitude modulation
[41] Y. Matsumura and N. Urasaki, “Comparison between PAM control and flux weakening control for PMSM drive,” in Proc. IEEE ICEMS, 2012, pp. 1-5.
[42] H. Matsumoto and Y. Neba, “A boost driver with an improved charge-pump circuit,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3178-3191, 2014.
[43] T. A. Burress, “Benchmarking EV and HEV technologies,” Technical Report ORNL, 2015.
[44] M. C. Chou and C. M. Liaw, “PMSM-driven satellite reaction wheel system with adjustable DC-link voltage,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 1359-1373, 2014.
[45] C. M. Liaw, K. W. Hu, Y. S. Lin, and T. H. Yeh, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4493-4504, 2016.
D. Hybrid Energy Storage System in EVs
[46] A. Castaings, W. Lhomme, R. Trigui, and A. Bouscayrol, “Practical control schemes of a battery/supercapacitor system for electric vehicle,” IET Elect. Syst. Transport., vol. 6, no. 1, pp. 20-26, 2016.
[47] L. Zubieta, and R. Bonert, “Characterization of double-layer capacitors for power electronics applications,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 199-205, 2008.
[48] J. M. Miller, D. Nebrigic, and M. Everett, “Ultracapacitor distributed model equivalent circuit for power electronic circuit simulation” Maxwell Technologies Inc. (2006) Available: www.ansoft.com.
[49] H. Yoo, S. K. Sul, Y. Park, and J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108-114, 2008.
[50] M. B. Camara, B. Dakyo, H. Gualous, and C. Nichita, “DC-DC converter control for embedded energy management supercapacitors and battery,” in Proc. IEEE IECON, 2010, pp. 2323-2328.
[51] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
[52] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor- based regenerative controlled electric drives with power-smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511-4522, 2012.
[53] R. Jackey, M. Saginaw, P. Sanghvi, and J. Gazzarri, “Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell,” SAE International, Publication Year: 2013.
[54] M. Neenu and S. Muthukumaran, ‘‘A battery with ultracapacitor hybrid energy storage system in electric vehicles,’’ in Proc. IEEE ICAESM, pp. 731-735, 2012.
[55] H. Xiaoliang, J. M. A. Curti, and H. Yoichi, “Energy management strategy with optimized Power interface for the battery supercapacitor hybrid system of electric vehicles,” in Proc. IEEE IECON, 2013, pp. 4635-4640.
[56] J. Blanes, R. Gutierrez, A. Garrigos, J. Lizan, and J. Cuadrado, “Electric vehicle battery life extension using ultracapacitors and an FPGA controlled interleaved buck boost converter,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5940-5948, 2013.
[57] M. G. Simões, B. Blunier, and A. Miraoui, “Fuzzy-based energy management control,” IEEE Trans. Ind. Appl., pp. 41-47, 2014.
[58] W. Wang, M. Cheng, Y. Wang, B. Zhang, Y. Zhu, S. Ding, and W. Chen, “A novel energy management strategy of onboard supercapacitor for subway applications with permanent-magnet traction system,” IEEE Trans. Veh. Technol., vol. 63, no. 6, pp. 2578-2588, 2014.
[59] H. Miniguano, A. Barrado, C. Raga, A. Lázaro, C. Fernández and M. Sanz, “A comparative study and parameterization of supercapacitor electrical models applied to hybrid electric vehicles,” 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Toulouse, 2016, pp. 1-6
[60] Y. Parvini, J. B. Siegel, A. G. Stefanopoulou, and A. Vahidi, “Supercapacitor electrical and thermal modeling, identification, and validation for a wide range of temperature and power applications,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1574-1585, 2016.
E. Photovoltaic in EVs
[61] C. Hamilton, G. Gamboa, J. Elmes, R. Kerley, A. Arias, M. Pepper, J. Shen, and I. Batarseh, “System architecture of a modular direct-DC PV charging station for plug-in electric vehicles,” in Proc. IEEE IECON. Soc., pp. 2516-2520, 2010.
[62] J. Yamasaki, R. Tominaga, Y. Ishii, A. Shimizu, S. Kinoshita, and S. Wakao, “Optimization of installation and operation for retail store with photovoltaic, storage battery and EV quick charger,” in Proc. IEEE PVSC., pp. 1893-1896, 2011.
[63] N. Kularatna, “Rechargeable batteries and their management,” IEEE Instrum. Meas. Mag., vol. 14, no. 2, pp. 20-33, 2011.
[64] J. I. Cairo and A. Sumper, “Requirements for EV charge stations with photovoltaic generation and storage,” in Proc. IEEE ISGT., pp. 1-6, 2012.
[65] J. Traube, F. Lu, D. Maksimovic, J. Mossoba, M. Kromer, P. Faill, S. Katz, B. Borowy, S. Nichols, and L. Casey, “Mitigation of solar irradiance intermittency in photovoltaic power systems with integrated electric-vehicle charging functionality,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 3058-3067, 2013.
[66] V. de la Fuente, C. L. T. Rodriguez, G. Garcera, E. Figueres, and R. O. Gonzalez, “Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1571-1581, 2013.
[67] H. Valderrama-Blavi, J. M. Bosque, F. Guinjoan, L. Marroyo, and L. Martínez- Salamero, “Power adaptor device for domestic DC microgrids based on commercial MPPT inverters,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1191-1203, 2013.
[68] S. A. Singh and S. S. Williamson, “Comprehensive review of PV/EV/grid integration power electronic converter topologies for DC charging applications,” in Proc. IEEE ITEC., pp. 1-5, 2014.
[69] M. Abdelhamid, R. Singh, and I. Haque, “Role of PV generated DC power in transport sector: case study of plug-in EV,” in Proc. IEEE ICDCM., pp. 299-304, 2015.
F. Position Sensorless Control Methods
Based on the derived variables or identified parameters
[70] J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC,” Conf. Rec. IEEE IAS, vol. 1, pp. 143-150, 1999.
[71] B. H. Bae, S. K. Sul, J. H. Kwon, and J. S. Byeon, “Implementation of sensorless vector control for super- high-speed PMSM of turbo-compressor,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 811-818, 2003.
[72] S. Morimoto, M. Sanada, and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no. 1, pp. 297-303.
[73] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
[74] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance improvement of Sensorless IPMSM drives in a low-speed region using online parameter identification,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, 2011.
[75] M. Hinkkanen, T. Tuovinen, L. Harnefors, and J. Luomi, “A combined position and stator-resistance observer for salient PMSM drives: design and stability analysis,” IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 601-609, 2012.
[76] M. A. Hamida, J. D. Leon, A. Glumineau, and R. Boisliveau, “An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 739-784, 2013.
Observer based methods
[77] Z. Chen, M. Tomita, S. Doki, and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
[78] A. Piippo, M. Hinkkanen, and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008.
[79] H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4069-4077, 2011.
[80] S. Po-ngam and S. Sangwongwanich, “Stability and dynamic performance improvement of adaptive full-order observers for Sensorless PMSM drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, 2012.
[81] N. K. Quang, N. T. Hieu, and Q. P. Ha, “FPGA-based sensorless PMSM speed control using reduced-order extended kalman filters,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6574-6582, 2014.
[82] Y. Park and S. K. Sul, “Sensorless control method for PMSM based on frequency-adaptive disturbance observer,” IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 143-151, 2014.
Back-EMF methods
[83] F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back EMF sensorless-control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, 2010.
[84] R. D. Hejny and R. D. Lorenz, “Evaluating the practical low-speed limits for back-EMF tracking-based sensorless speed control using drive stiffness as a key metric,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1337-1343, 2011.
[85] Z. Wang, K. Lu, and F. Blaabjerg, “A simple startup strategy based on current regulation for back-EMF-based sensorless control of PMSM,” IEEE Trans. Ind. Electron., vol. 27, no. 8, pp. 3817-3825, 2012.
[86] A. Sarikhani and O. A. Mohammed, “Sensorless control of PM synchronous machines by physics-based EMF observer,” IEEE Trans. Energy Convers., vol. 27, no. 4, pp. 1009-1017, 2012.
[87] X. Song, J. Fang, B. Han, and S. Zheng, “Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1438-1449, 2016.
[88] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002.
[89] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1264-1274, 2006.
[90] K. W. Hu and C. M. Liaw, “A position sensorless surface-mounted permanent-magnet synchronous generator and its operation control,” IET Power Electron., vol. 8, no. 9, pp. 1636-1650, 2015.
Methods based on rotor magnet saliency
[91] F. Briz, M. W. Degner, A. Diez, and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[92] J. H. Jang, J. I. Ha, M. Ohto, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[93] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron, and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[94] D. Raca, M. C. Harke, and R. D. Lorenz, “Robust magnet polarity estimation for initialization of PM synchronous machines with near-zero saliency,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1199-1209, 2008.
[95] Y. Li, Z. Q. Zhu, D. Howe, C. M. Bingham, and D. A. Stone, “Improved rotor-position estimation by signal injection in brushless AC motors, accounting for cross-coupling magnetic saturation,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1843-1850, 2009.
[96] H. W. De Kock, M. J. Kamper, and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
[97] E. de M Fernandes, A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Comparison of HF signal injection methods for sensorless control of PM synchronous motors,” in Proc. IEEE APEC, 2010, pp. 1984-1989.
[98] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
[99] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511.
[100] B. Stumberger, G. Stumberger, D. Dolinar, A. Hamler, and M. Trlep, “Evaluation of saturation and cross-magentization effects in interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1264-1271, 2003.
[101] P. Guglielmi, M. Pastorelli, and A. Vagati, “Cross saturation effects in IPM motors and related impact on zero-speed sensorless control,” in Proc. IEEE IASC, 2005, pp. 2546-2556.
[102] Z. Q. Zhu, Y. Li, D. Howe, and C. M. Bingham, “Compensation for rotor position estimation error due to cross-coupling magnetic saturation in signal injection based sensorless control of PM brushless AC motors,” in Proc. IEEE IEMDC, 2007, pp. 208-213.
[103] K. Ide, H. Iura, and M. Inazumi, “Hybrid sensorless control of IPMSM combining high frequency injection method and back EMF method,” in Proc. IEEE IECON, 2010, pp. 2236-2241.
[104] G. Foo and M. F. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270-1278, 2010.
[105] I. Hideaki, I. Masanobu, K. Takeshi, and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
[106] S. Bolognani, S. Calligaro, R. Petrella, and M. Tursini, “Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, 2011.
[107] S. Bolognani, S. Calligaro, R. Petrella, and M. Tursini, “Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-103, 2011.
G. PWM Inverters
[108] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, New York: Pergamon Press, 1988.
[109] B. K. Bose, Modern Power Electronic and AC Drive, New Jersey: Prentice Hall, 2002.
[110] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
[111] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
[112] S. J. Chiang and C. M. Liaw "A single-phase three-wire transformerless inverter," IEE Proc. Pt. B, vol. 141, No. 4, pp. 197-205, 1994.
[113] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[114] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña, and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
[115] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, October 2013.
[116] B. Koushki, H. Khalilinia, J. Ghaisari, and M. S. Nejad, “A new three-phase boost inverter- topology and controller,” in Proc. IEEE CCECE, 2008, pp. 757-760.
[117] A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011.
[118] E. Koutroulis and F. Blaabjerg, “Methodology for the optimal design of transformerless grid-connected PV inverters,” IET Power Electron., vol. 5, no .8, pp. 1491-1499, 2012.
[119] U. R. Prasanna and A. K. Rathore, “A novel single-reference six-pulse-modulation (SRSPM) technique-based interleaved high-frequency three-phase inverter for fuel cell vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5547-5556, 2013.
H. Grid-Connected Operations
[120] M. C. Kisacikoglu, B. Ozpineci, and L. M. Tolbert, “Examination of a PHEV bidirectional charger system for V2G reactive power compensation,” in Proc. IEEE APEC, 2010, pp. 458-465.
[121] R. J. Ferreira, L. M. Miranda, R. E. Araujo, and J. P. Lopes, “A new bi-directional charger for vehicle-to-grid integration,” in Proc. IEEE ISGT, 2011, pp. 1-5.
[122] M. Takagi, Y. Iwafune, K. Yamaji, H. Yamamoto, K. Okano, R. Hiwatari, and T. Ikeya, “Electricity pricing for PHEV bottom charge in daily load curve based on variation method,” in Proc. IEEE ISGT, 2012, pp. 1-6.
[123] E. S. Dehaghani and S. S. Williamson, “On the inefficiency of vehicle-to-grid power flow: potential barriers and possible research directions,” in Proc. IEEE ITEC, 2012, pp. 1-5.
[124] M. C. Kisacikoglu, B. Ozpineci, and L. M. Tolbert, “EV/PHEV bidirectional charger assessment for V2G reactive power operation,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5717-5727, 2013.
[125] T. S. Ustun, C. R. Ozansoy, and A. Zayegh, “Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, 2013.
[126] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” in Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, 2013.
[127] F. Berthold, A. Ravey, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle-to-home functionality,” IEEE Trans. Transport. Electrific., vol. 1, no. 2, pp. 168-177, 2015.
[128] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/super-capacitor with G2V and V2H/V2G capabilities, ” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, 2015.
[129] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation, ”IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, 2015.
[130] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, 2016.
[131] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
[132] P. H. Kydd, J. R. Anstrom, P. D. Heitmann, K. J. Komara, and M. E. Crouse, “Vehicle-solar-grid integration: concept and construction” IEEE Power Energy Technol. Syst. J. vol. 3, no. 3, pp. 81-88, 2016.
[133] F. Caricchi, F. Crescimbini, F. Giulii Capponi, and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle drives,” in Proc. IEEE APEC, 1998, vol.1, pp. 287-293.
I. Front-end Converters and Switch-mode Rectifiers
[134] Y. Du, S. Lukic, B. Jacobson, and A. Huang, “A review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” in Proc. IEEE ECCE, 2011, pp. 553-560.
[135] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[136] T. Mishima, K. Akamatsu, and M. Nakaoka, “A high frequency-link secondary- side phase-shifted full-range soft-switching PWM DC-DC converter with ZCS active rectifier for EV battery chargers,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5758-5773, 2013.
[137] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.
[138] E. Mese, Y. Yasa, H. Akca, M. G. Aydeniz, and M. Garip, “Investigating operating modes and converter options of dual winding permanent magnet synchronous machines for hybrid electric vehicles,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 285-295, 2015.
[139] O. C. Onar, J. Kobayashi, and A. Khaligh, “A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck-boost converter for PHEVs,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2018-2032, Jun. 2012.
[140] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[141] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[142] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Proc. Elect. Power Appl., vol. 1, no. 3, pp. 316-328, 2007.
[143] Y. C. Chang and C. M. Liaw, “A flyback rectifier with spread harmonic spectrum,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3485-3499, July 2011.
[144] L. Huber, J. Yungtaek, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[145] F. Musavi, W. Eberle, and W. G. Dunford, “A high-performances single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1833-1843, 2011.
[146] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[147] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[148] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[149] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, May/2010.
[150] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, 2013.
[151] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013.
[152] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
[153] J. G. Pinto, V.Monteiro, H. Gonçalves, and J. L. Afonso, “Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode,” IEEE Trans. Veh. Technol., vol. 63, no. 3, pp. 1104-1115, 2014.
[154] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[155] B. Koushki, A. Safaee, P. Jain, and A. Bakhshai “Review and comparison of bi-directional AC-DC converters with V2G capability for on-board EV and HEV,” in Proc. IEEE ITEC, 2014, pp. 1-6.
[156] I. Subotic, N. Bodo, and E. Levi, “Single-phase on-board integrated battery chargers for EVs based on multiphase machines,” IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6511-6523, 2016.
[157] S. Kim and F. S. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, 2015.
[158] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016.
[159] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016.
[160] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard charger,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, 2017.
K. Others
[161] “Digital signal controller TMS320F28335 data sheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, May 31, 2016.
[162] C. Y. Song, “A position sensorless battery/SC powered EV PMSM drive with buck-boost interface converters having grid connected and energy harvesting functions,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC., 2016.
[163] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” June, 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *