帳號:guest(18.117.106.78)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾柏唐
作者(外文):Zeng, Bo-Tang
論文名稱(中文):分切合整數位控制並聯三相併網型系統
論文名稱(外文):Paralleled Three-Phase Grid-Connected Converters with D-Σ Digital Control
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):呂錦山
廖聰明
陳鴻祺
口試委員(外文):Leu, Ching-Shan
Liaw, Chang-Ming
Chen, Hung-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061505
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:換流器並聯分切合整數位控制三次諧波注入相位交錯式
外文關鍵詞:paralleled convertersD-Σ digital controlTHIPWMinterleaving
相關次數:
  • 推薦推薦:0
  • 點閱點閱:101
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
本研究以分切合整數位控制(D-Σ digital control)實現三相併網型並聯系統,可依需求操作在市電併聯模式與整流兼功因修正模式,以達到直流鏈電壓調節之目的。
本研究採用集中式控制,中央控制單元先依據直流鏈電壓變化來獲得電流命令,再將其平均分配給各模組,進而達到均流效果。可避免未來應用在高功率時,電流感測元件成本過高或是不易取得等問題。分切合整數位控制將一切換週期分切成不同開關模式後,將各模式的電流變化量合整,進而計算出開關責任比率。此控制方式將濾波電感隨電流變化納入考量,因此能有效地降低鐵芯體積以及成本;同時此控制法因三相獨立控制,只需追蹤各自的電流命令,能有效的抑制模組間環流。本研究亦透過三次諧波注入(Third Harmonic Injection)提高電壓利用率,避免激磁力道不足的問題,以及透過相位交錯式來減少電流總諧波失真率。
最後本研究透過模擬與實作三部三相換流器並聯系統,依據需求操作在市電併聯模式與整流兼功因修正模式,驗證所提出的均流與環流抑制控制策略及諧波特性改善情形。
本研究的主要貢獻如下:第一、採用分切合整數位控制,可將電感變化量納入考量,且不需adc至dq座標軸轉換的運算處理。第二、使用三次諧波注入,提高其電壓利用率。第三、透過直流鏈電壓變化計算電流命令,避免高功率應用時,電流感測元件成本過高等問題。第四、採用相位交錯式以降低電流總諧波失真率,改善電力品質。
This thesis presents a paralleled three-phase grid-connected converter system with division-summation (D-Σ) digital control. The system can be operated in grid connection mode and rectification mode with power factor correction to achieve dc bus regulation.
This research adopts a concentrated control to achieve uniform current distribution. The control center unit obtains a current command from the deviation of dc bus voltage and then transmits the command to each module, so as each module can achieve equal current sharing. This method can reduce the cost of current sensing component in high power applications. D-Σ digital control divides one switching cycle according to the switching states, and then summarizes all of individual current variation to determine the duty ratio of switches. The control law takes the filter inductance variation into consideration so that it can reduce cost and volume effectively. At the same time, the control law makes each converter track their current references individually, which reduces circulating current significantly. This research also uses the third harmonic injection PWM (THIPWM) to raise DC-link voltage utilization and increase magnetizing force. In addition, it uses interleaved carrier to reduce total current harmonic distortion.
Finally, three converters in parallel have been simulated and implemented. They can be operated in grid connection mode and rectification mode with power factor correction to verify the proposed control approaches.
The major contributions of this research are as follows: First, the D-Σ digital control takes filter inductance variation into account and omits abc-to-dq frame transformation. Secondly, THIPWM-based D-Σ digital control to raises DC-link voltage utilization. Thirdly, current reference is obtained by using the deviation of DC-link voltage which reduces the cost of current-sensing components in high power applications. Fourthly, this study uses interleaved carrier to reduce total current harmonic distortion.
摘要....I
Abstract....II
誌謝....IV
目錄....V
圖目錄....VII
表目錄....X
第一章 緒論....1
1-1 研究背景與動機....1
1-2 文獻回顧....2
1-3 論文大綱....10
第二章 硬體架構與控制策略....11
2-1 換流器模組硬體架構與運作....11
2-2 分切合整數位控制....11
2-3 並聯系統控制策略....21
第三章 韌體規劃....30
3-1 微控制器介紹....30
3-2 韌體規劃與程式流程....32
第四章 周邊電路....39
4-1 輔助電源....39
4-2 開關隔離驅動電路....42
4-3 直流鏈電壓回授電路....43
4-4 市電電壓回授電路....44
4-5 電感電流回授電路....46
4-6 串列通訊傳輸介面(SCI)電路....47
4-7 硬體保護電路....48
4-8 直流鏈預充電路....49
第五章 模擬與實測結果....51
5-1 電氣規格....51
5-2 實務考量....52
5-3 模擬與實測波形....56
第六章 結論與未來研究方向....70
6-1 結論....70
6-2 未來研究方向.....70
參考文獻....72
[1] S. Duan, Y. Megn, J.Xiong, Y. Kang and J. Chen, “Parallel operation control technique of voltage source inverter in UPS,” IEEE PEDS ’99, vol. 2, pp. 883-887, July 1999.
[2] K. Siri, C. Q. Lee and T. F. Wu, "Current distribution control for parallel connected converters. II," in IEEE Trans. on Aerospace and Electronic Systems, vol. 28, no. 3, pp. 841-851, July 1992
[3] K. Siri, C. Q. Lee and T. F. Wu, "Current distribution control for parallel connected converters. I," in IEEE Trans. on Aerospace and Electronic Systems, vol. 28, no. 3, pp. 829-840, July 1992.
[4] T. B. Lazzarin, G. A. T. Bauer and I. Barbi, "A control strategy by instantaneoμ average values for parallel operation of single phase voltage source inverters based in the inductor current feedback," 2009 IEEE ECCE, San Jose, CA, 2009, pp. 495-502.
[5] H. Han, X. Hou, J. Yang, J. Wu, M. Su and J. M. Guerrero, "Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids," in IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 200-215, Jan. 2016.
[6] T. Kawabata and S. Higashino, "Parallel operation of voltage source inverters," in IEEE Transactions on Industry Applications, vol. 24, no. 2, pp. 281-287, Mar/Apr 1988.
[7] Y. Komatsuzaki, "Cross current control for parallel operating three phase inverter," PESC '94 Record., 25th Annual IEEE, Taipei, vol. 2, pp. 943-950, 1994
[8] Y. Sato and T. Kataoka, "Simplified control strategy to improve AC-input-current waveform of parallel-connected current-type PWM rectifiers," in IEE Proceedings - Electric Power Applications, vol. 142, no. 4, pp. 246-254, Jul 1995.
[9] K. Matsui, “A pulsewidth-modulated inverter with parallel-connected transistors using current-sharing reactors,” IEEE Trans. on Power Electron., Vol. 8, No. 2, pp. 186-191, Apr. 1993.
[10] R. Giral, L. Martinez-Salamero, and S. Singer, “Interleaved converters operation based on CMC,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 643-652, Jul. 1999.
[11] S. Ogasawara, J. Takagaki, and H. Akagi, “A novel control scheme of a parallel current-controlled PWM inverter,” IEEE Trans. on Ind. Applicat., vol. 28, no. 5, pp. 1023–1030, Sept./Oct. 1992.
[12] K. Li, H.-B. Xu, Q. Ma, L. Ma, X.-S. Xin, “Research on the control of zero-sequence circulating current of paralleled inverters based on Dual-Carrier-Modulator and PR control,” in Proc. ITEC Asia-Pacific. Transportation Electrification, pp. 1-7, 2014.
[13] C.-T. Pan and Y.-H. Liao “Modeling and coordinate control of circulating currents in parallel three-phase boost rectifiers,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 825-838, Apr. 2007.
[14] Y. Chen and K. Smedley, “Parallel operation of one-cycle controlled three-phase PFC rectifiers,” IEEE Trans. on Ind. Electron., Vol. 54, No. 6, pp. 3217–3224, Dec. 2007.
[15] Zhihong Ye, D. Boroyevich, Jae-Young Choi and F. C. Lee, "Control of circulating current in parallel three-phase boost rectifiers," APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058), New Orleans, LA, 2000, pp. 506-512 vol.1
[16] A. M. Hava, R. J. Kerkman and T. A. Lipo, "Simple analytical and graphical methods for carrier-based PWM-VSI drives," in IEEE Trans. on Power Electronics, vol. 14, no. 1, pp. 49-61, Jan 1999.
[17] D. G. Holmes, "The significance of zero space vector placement for carrier-based PWM schemes," in IEEE Transactions on Industry Applications, vol. 32, no. 5, pp. 1122-1129, Sep/Oct 1996.
[18] T. F. Wu, Y. H. Huang, Y. K. Chen and Z. R. Liu, "A 3C strategy for multi-module inverters in parallel operation to achieve an equal current distribution," PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), Fukuoka, 1998, pp. 186-192, vol.1.
[19] 吳毓恩,加權電流分配控制換流器並聯系統,國立中正大學電機工程研究所博士論文,2004年。
[20] 何嘉偉,具冗餘及熱插拔功能之多模組換流器並聯系統研製,國立中正大學電機工程研究所碩士論文,2004年。
[21] 陳至鈞,三相三線式20kW雙向換流器研製,國立中正大學電機工程研究所碩士論文,2012年7月。
[22] 蔡昆宏,分切合整數位控制與兩相或空間向量調變之三相雙向換流器性能比較,國立清華大學電機工程研究所碩士論文,2014年7月。
[23] 張瑛驛,分切合整數位控制三相雙向換流器並聯系統,國立清華大學電機工程研究所碩士論文,2015年7月。
[24] Renesas, RX62T Group Datasheet Rev. 1.10, Apr. 2011.
[25] UC3843 datasheet
[26] FOD3120 datasheet
[27] LAX 100-NP datasheet
[28] MAX232EI datasheet
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *