帳號:guest(3.15.198.92)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周冠佑
作者(外文):Chou, Kuan-Yu
論文名稱(中文):具雙向隔離充電器之蓄電池/超電容供電之電動車開關式磁阻馬達驅動系統
論文名稱(外文):A BATTERY/SUPERCAPACITOR POWERED EV SRM DRIVE WITH BIDIRECTIONAL ISOLATED CHARGER
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):王醴
謝欣然
陳景然
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061504
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:224
中文關鍵詞:電動車開關式磁阻馬達介面轉換器諧振轉換器變頻器電網至車輛車輛至家庭車輛至電網能源收集切換式整流器維也納切換式整流器
外文關鍵詞:electric vehicleswitched-reluctance motorinterface converterLLC resonant converterinverterG2VV2HV2Genergy harvestingswitch-mode rectifierVienna SMR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:837
  • 評分評分:*****
  • 下載下載:35
  • 收藏收藏:0
本論文旨在研製一具電網至車輛、車輛至家庭、車輛至電網及能源收集功能之蓄電池/超電容供電之電動車開關式磁阻馬達驅動系統,所有輔助功能之達成係利用馬達驅動系統中既有元件與外加之雙向隔離諧振式直流/直流轉換器。
馬達驅動系統之直流鏈電壓由蓄電池經全橋直流/直流轉換器建立。除了升壓外,當馬達操作於低速時,直流鏈電壓也可低於蓄電池電壓以改善效率。為協助蓄電池之加速及再生煞車,超電容透過一單臂雙向之降/升壓直流/直流轉換器介接至直流鏈。在馬達驅動控制方面,為得較佳之線圈電流追蹤響應,迴授控制輔以反電動勢前饋控制及強健追蹤誤差消除控制。此外,亦施行動態換相前移與直流鏈升壓,降低於高速/高載下之反電動勢效應。
於閒置狀態,所建電動車驅動系統可從事移動式儲能應用。於聯網下,電氣隔離由諧振式直流/直流轉換器之高頻直流鏈提供。在電網至車輛之操作中,以驅動系統既有元件組成切換式整流器為主之車上充電器,蓄電池可由電網充電,具有良好之電力品質。相反地,於車輛至家庭/車輛至電網之操作中,所建之單相三線式變頻器產生110V/220V 60Hz交流電,供電家用或回送電能至電網。最後,本論文開發一以三相維也納切換式整流器為主之插入式能源收集系統。可由電網取電從事電池之輔助式快充。此外,可收集之三相交流電、單相交流電與直流電亦可輸入此系統,對車上蓄電池充電。
This thesis develops a battery/super-capacitor (SC) powered electric vehicle (EV) switched-reluctance motor (SRM) drive with grid-to-vehicle (G2V), vehicle-to-home (V2H), vehicle-to-grid (V2G) and energy harvesting functions. All these auxiliary functions are conducted with the converters formed using the SRM drive embedded components and an externally added bidirectional LLC resonant isolated DC/DC converter.
The EV DC-link voltage is established by the battery through a H-bridge DC/DC converter. In addition to voltage boosting, the DC-link voltage can also be lower than battery voltage under lower speeds to yield improved efficiencies. The SC is connected to the DC-link via an one-leg bidirectional buck/boost DC/DC converter for assisting the battery in acceleration and regenerative braking. In motor driving control, to yield better winding current tracking responses, the properly designed feedback controller is augmented with an observed back electromotive force (EMF), a feedforward controller and a robust current tracking error cancellation controller (RCECC). Moreover, the commutation shifting and voltage boosting approaches are further applied to reduce the effects of EMF under higher speeds and/or heavier loads.
In idle condition, the developed EV drive can be conducted movable storage applications. The isolation in grid-connected operation is provided by a LLC resonant DC/DC converter established high-frequency DC-link. In G2V operation, the switch-mode rectifier based on-board chargers are formed using the EV drive embedded components. The battery can be charged from the utility grid with good line drawn power quality. Conversely in V2H/V2G operations, a three-phase three-wire (1P3W) inverter is formed to generate the 220V/110V 60Hz AC output voltages to power home appliances or send power back to the utility grid. Finally, a three-phase Vienna SMR based plug-in energy harvesting scheme (EHS) is developed. The additional auxiliary quick charging from the mains can be conducted. In addition, the possible harvested three-phase AC source, single-phase AC source and DC source can also be the inputs for charging the on-board battery.
ABSTRACT(i)
ACKNOWLEDGEMENTS(ii)
LIST OF CONTENTS(iii)
LIST OF FIGURES(vi)
LIST OF TABLES(xxiii)
LIST OF SYMBOLS(xxv)
CHAPTER 1 INTRODUCTION(1)
CHAPTER 2 BASICS OF SWITCHED-RELUCTANCE MOTOR IN ELECTRIC VEHICLE
APPLICATIONS(8)
CHAPTER 3 DEVELOPMENT AND DRIVING OPERATION OF ELECTRIC VEHICLE
SWITCHED-RELUCTANCE MOTOR DRIVE(39)
CHAPTER 4 G2V AND V2H/V2G OPERATIONS VIA BIDIRECTIONAL SINGLE-PHASE
THREE-WIRE INVERTER AND LLC RESONANT DC/DC CONVERTER(103)
CHAPTER 5 ENERGY HARVESTING SYSTEM(179)
CHAPTER 6 CONCLUSIONS(214)
REFERENCES(216)
A. Renewable Energy and Electric Vehicles
[1] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512- 2527, 2011.
[2] G. Wu, S. Kodama, Y. Ono, and Y. Monma, “A hybrid microgrid system including renewable power generations and energy storages for supplying both the DC and AC loads,” in Proc. IEEE ICRERA, 2012, pp. 1-5.
[3] J. G. Matos, F. S. F. Silva, and L. A. S. Ribeiro, “Power control in AC isolated microgrids with renewable energy sources and energy storage systems,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3490-3498, 2015.
[4] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-part II: A review of power architectures, applications, and standardization issues,” IEEE Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016.
[5] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, Jan. 2016.
[6] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, Nov. 2006.
[7] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, Jan. 2012.
[8] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[9] S. S. Williamson, A. K. Rathore, F. Musavi, “Industrial electronics for electric transportation: Current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015.
[10] S. Haghbin, S. Lundmark, M. Alaküla, and O. Carlson, “An isolated high-power integrated charger in electrified-vehicle applications,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4115-4126, Nov. 2011.
[11] B. Whitaker et al., “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2606-2617, May 2013.
[12] S. Haghbin, K. Khan, S. Zhao, M. Alakula, S. Lundmark, and O. Carlson, “An integrated 20-kW motor drive and isolated battery charger for plug-in vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 4013-4029, Aug. 2013.
[13] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
[14] H. Haga and F. Kurokawa, “Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicle,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2498-2507, April 2017.
[15] N. Tashakor, E. Farjah, and T. Ghanbari, “A bidirectional battery charger with modular integrated charge equalization circuit,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2133-2145, March 2017.
[16] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard chargers,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, March 2017.
[17] V. R. Roberto, L. G. Pau, H. P. Daniel, S. Andreas, C. Ignasi, C. Z. Miguel, and V. Narcís, “Electric vehicles in power systems with distributed generation: vehicle to microgrid (V2M) project,” in Proc. IEEE EPQU, 2011, pp. 1-6.
[18] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[19] J. G. Pinto, V. Monteiro, H. Gonçalves, B. Exposto, D. Pedrosa, C. Couto, and J. L. Afonso, “Bidirectional battery charger with grid-to-vehicle, vehicle-to-grid and vehicle-to-home technologies,” in Proc. IEEE IECON, 2013, pp. 5934-5939.
[20] L. Chunhua, K. T. Chau, W. Diyun, and G. Shuang, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” in Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, 2013.
[21] J. G. Pinto, V. Monteiro, H. Goncalves, and J. L. Afonso, “Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode,” IEEE Trans. Veh. Technol., vol. 63, no. 3, pp. 1104-1116, 2014.
[22] F. Berthold, A. Ravey, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle-to-home functionality,” IEEE Trans. Transport. Electrific., vol. 1, no. 2, pp. 168-176, Aug. 2015.
[23] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol,. vol. 65, no. 3, pp. 1007-1020, March. 2016.
[24] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
[25] H. Gao, Y. Gao, and M. Ehsani, “A neural network based SRM drive control strategy for regenerative braking in EV and HEV,” in Proc. IEEE IEMDC, 2001, pp. 571-575.
[26] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[27] N. Wada, N. Momma, and I. Miki, “Rotor position estimation method in high speed region for 3-phase SRM used in EV,” in Proc. ICEMS, 2012, pp. 1-5.
[28] K. Kiyota, T. Kakishima, A. Chiba, and M. A. Rahman, “ Cylindrical rotor design for acoustic noise and windage loss reduction in switched reluctance motor for HEV applications,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 154-162, 2016.
[29] J. W. Jiang, B. Bilgin, and A. Emadi, “Three-phase 24/16 switched reluctance machine for a hybrid electric powertrain,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 76-85, March. 2017.
[30] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drive for electric propulsion: A comparative study.” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, March. 2017.
[31] C. Gan, J. Wu, Y. Hu, S. Yang, W. Cao, and J. M. Guerrero, “New integrated multilevel converter for switched reluctance motor drive in plug-in hybrid electric vehicles with flexible energy conversion,” IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3754-3766, May 2017.
B. Battery and Supercapacitor
[32] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, 2005.
[33] M. Brandl et al., “Batteries and battery management systems for electric vehicles,” in Proc. IEEE DATE, 2012, pp. 971-976.
[34] O. M. F. Camacho, P. B. Nørgård, N. Rao, and L. M. Popa, “Electrical vehicle batteries testing in a distribution network using sustainable energy,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 1033-1042, March 2014.
[35] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics- lead acid, nickel based, lead crystal and lithium based batteries,” IEEE UKSIM-AMSS Conf, pp. 444-450, 2015.
[36] S. Pay and Y. Baghzouz, “Effectiveness of battery-supercapacitor combination in electric vehicles,” in Proc. IEEE Power Tech Conf, Bologna, Italy, Jun. 2003, vol. 3, pp. 1-6.
[37] A. F. Burke, “Batteries and ultra-capacitors for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, pp. 806-820, 2007.
[38] S. Lu, K. A. Corzine, and M. Ferdowsi, “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516-1523, 2007.
[39] M. B. Camara, H. Galous, F. Gustin, and A. Berthon, “Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles,” IEEE Trans. Veh. Technol., vol.57, no. 5, pp.2721-2735, Sept. 2008.
[40] M. B. Camara, H. Gualous, F. Gustin, and A. Berthon, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications- polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, 2010.
[41] M. Zandi, A. Payman, J. Martin, S. Pierfederici, B. Davat, and F. Meibody-Tabar, “Energy management of a fuel cell/supercapacitor/battery power source for electric vehicular applications,” IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 443-443, Feb. 2011.
[42] A. Ostadi and S. K. Chen, “Hybrid energy storage system (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” in Proc. IEEE ITEC, 2013, pp. 1-7.
[43] A. Tina, M. B. Camara, B. Dakyo, and Y. Azzouz, “DC/DC and DC/AC converters control for hybrid electric vehicles energy management-ultracapacitors and fuel cell,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 686-696, 2013.
[44] X. Huang, H. Tosiyoki, and H. Yoichi, “System design and converter control for super capacitor and battery hybrid energy system of compact electric vehicles,” in Proc. IEEE ECCE, 2014, pp. 1-10.
[45] R. E. Araújo, R. d. Castro, C. Pinto, P. Melo, and D. Freitas, “Combined sizing and energy management in EVs with batteries and supercapacitors,” IEEE Trans. Veh. Technol., vol. 63, no. 7, pp. 3062-3076, Sept. 2014.
[46] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.
C. Switched-Reluctance Motor Drive and Converter
[47] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[48] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[49] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
[50] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[51] K. M. Rahman and S. E. Schulz, “Design of high efficiency and high density switched reluctance motor for vehicle propulsion,” in Proc. IEEE IAC, 2001, vol. 3, pp. 2104-2110.
[52] S. Kachapornkul, P. Jitkreeyarn, P. Somsiri, K. Tungpimolrut, A. Chiba, and T. Fukao, “A design of 15 kW switched reluctance motor for electric vehicle applications,” in Proc. IEEE ICEMS, 2007, pp. 1690-1693.
[53] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[54] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEV,” IEEE Trans. Ind. Electron., vol. 60, no.72, pp. 2564-2575, 2013.
[55] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[56] J. Ye and A. Emadi, “Power electronic converters for 12/8 switched reluctance motor drives: A comparative analysis,” in Transportation Electrification Conference and Expo (ITEC), pp. 1-6, IEEE, 2014.
[57] S. Mir, I. Husain, and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
[58] K. Tomczewski and K. Wrobel, “Improved C-dump converter for switched reluctance motor drives,” IET Power Electron., vol. 7, iss. 10, pp2628-2635, 2014.
[59] L. G. B. Rolim, W. I. Suemitsu, E. H. Watanable, and R. Hanitsch, “Development of an improved switched reluctance motor drive using a soft-switching converter,” in IEE Proc. Elect. Power Appl., vol. 146, no. 5, pp. 488-494, 1999.
[60] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” in IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[61] D. H. Lee, G. Xu, and J. W. Ahn, “Analysis of passive boost power converter for three-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2961-2971, 2010.
[62] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[63] K. Chimata, N. Hoshi, and J. Haruna, “Characteristics of switched reluctance motor drive circuit with voltage boost function without additional reactor,” in Proc. IEEE PEDES, 2012, pp. 1-6.
[64] H. C. Chang, C. H. Chen, Y. H. Chiang, W. Y. Sean, and C. M. Liaw, “Establishment and control of a three-phase switched reluctance motor drive using intelligent power modules,” IET Elect. Power Appl., vol. 4, no. 9, pp. 772-782, 2010.
[65] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
D. Modeling and Dynamic Control
[66] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000.
[67] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
[68] L. Chenjie, W. Wei, M. McDonough, and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, Feb. 2012.
[69] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
[70] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen, and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[71] G. G. Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” in Proc. Ind. Appl., 2002, vol. 2, pp. 1212-1218.
[72] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[73] Z. Lin, D. Reay, B. Williams, and X. He, “High-performance current control for switched reluctance motors based non-line estimated parameters,” IET Elect. Power Appl., vol. 4, no.1, pp. 67-74, 2010.
[74] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3717-3726, Nov. 2014.
[75] J. Ye, P. Malysz, and A. Emadi, “A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 381-394, June. 2015.
[76] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[77] C. Lucas, M. M. Shanehchi, P. Asadi, and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[78] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
[79] S. K. Panda, X. M. Zhu, and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
[80] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
E. Commutation Instant Shifting
[81] J. J. Gribble, P. C. Kjaer, C. Cossar, and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
[82] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen, and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[83] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[84] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[85] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[86] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
F. Front-End Converters
[87] F. Caricchi, F. crescimbini, F. G. Capponi, and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
[88] J. Silvestre, “Half-bridge bidirectional DC-DC converter for small electric vehicle,” in Proc. SPEEDAM, 2008, pp. 884-888.
[89] K. Okura, T. Nabeshima, T. Sato, K. Nishijima, and H. Yajima, “High efficiency operation for H-bridge DC-DC converter,” IEEE ECCE Asia Conf. Korea. June. 2011.
[90] L. Kumar and S. Jain, “A multiple input dc-dc converter for interfacing of battery/ ultracapacitor in EVs/HEVs/FCVs,” in Proc. IEEE IICPE, 2012, pp. 1-6.
[91] O. C. Onar, J. Kobayashi, and A. Khaligh, “A fully directional universal power electronic interface for EV, HEV, and PHEV Applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5489-5498, 2013.
[92] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, Oct. 2013.
[93] A. Hintz, U. R. Prasanna, and K. Rajashekara, “Novel modular multiple-input bidirectional DC-DC power converter (MIPC) for HEV/FCV application,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3163-3172, May 2015.
[94] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, July 2015.
[95] M. McDonough, “Integration of inductively coupled power transfer and hybrid energy storage system: A multiport power electronics interface for battery-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6423-6433, Nov. 2015.
G. Switch-Mode Rectifiers and G2V Operation
[96] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[97] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[98] L. Huber, J. Yungtaek, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[99] S. Lacroix, E. Laboure, and M. Hilairet, “An integrated fast battery charger for electric vehicle,” in Proc. IEEE VPPC, 2010, pp. 1-6.
[100] S. Haghbin et al., “Integrated chargers for EV’s and PHEV’s: Examples and new solutions,” in Proc. ICEM, 2010, pp. 1-6.
[101] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: Review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
[102] H. Yihua, S. Xueguan, C. Wenping, and J. Bing, “New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs),” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5722-5731, Oct. 2014.
[103] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016.
H. Vienna Switch-Mode Rectifiers
[104] T. Thangavelu, P. Shanmugam, and K. Raj, “Modelling and control of Vienna rectifier a single phase approach,” IET Power Electron., vol. 8, iss. 12, pp. 2471-2482, 2016.
[105] N. C. Foureaux, J. H. Oliveira, J. F. D. Oliveira, B. J. C. Filho, and R. S. Faria, “Command generation for wide-range operation of hysteresis-controlled Vienna rectifiers,” IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 2373-2380, May/Jun. 2015.
[106] B. Kedjar, H. Y. Kanaan, and K. A. Hadad, “Vienna rectifier with power quality added function,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 3847-3856, Aug. 2014.
I. LLC resonant DC/DC converter
[107] G. Chryssis, High-Frequency Switching Power Supply, 2nd ed. New York: McGraw-Hill, 1989.
[108] A. I. Pressman, Switching Power Supply Design, 2nd ed. New York: McGraw-Hill, 1999.
[109] W. Chen, P. Rong, and Z. Lu, “ Snubberless bidirectional DC-DC converter with new CLLC resonant tank featuring minimized switching loss,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3075-3086, Sep. 2010.
[110] N. Radimov, R. Orr, and T. K. Gachovska, “Bi-directional CLLC front-end for off-grid battery inverters,” IEEE IHTC., pp. 1-4, 2015.
[111] W. L. Malan, D. M. Vilathgamuwa, and G. R. Walker, “Modeling and control of a resonant dual active bridge with a tuned CLLC network,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7297-7310, Oct. 2016.
[112] C. Liu, J. Wang, K. Colombage, C. Gould, and B. Sen, “A CLLC resonant converter based bidirectional EV charger with maximum efficiency tracking,” IET PEMD, pp. 1-6, 2016.
J. Inverters and V2H/V2G Operations
[113] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” in IEE Proc. Elect. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
[114] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single- phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[115] B. S. Prasad, S. Jain, and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
[116] F. Berthold, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “PHEV control strategy including vehicle to home (V2H) and home to vehicle (H2V) functionalities,” in Proc. IEEE VPPC, 2011, pp. 1-6.
[117] B. Kramer, S. Chakraborty, and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
[118] A. K. Verma, B. Singh, and D. T. Shahani, “Grid to vehicle and vehicle to grid energy transfer using single-phase bidirectional AC-DC converter and bidirectional DC-DC converter,” in Proc. IEEE ICEAS, 2011, pp. 1-5.
[119] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba, and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559-564, 2012.
[120] W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin, and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505, May 2012.
[121] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power flow between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
[122] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5673-5689, 2013.
[123] T. S. Ustun, C. R. Ozansoy, and A. Zayegh, “Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, Jun. 2013.
K. Others
[124] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” June, 2009.
[125] J. J. He, “A battery/supercapacitor powered EV SRM drive with G2V/V2G functions,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2015.
[126] G. C. He, “On a battery/supercapacitor powered EV SRM drive having G2V/V2G and plug- in energy harvesting capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *