帳號:guest(18.191.140.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):姚晨偉
作者(外文):Yao, Chen-Wei
論文名稱(中文):功率循環式測試之不斷電系統
論文名稱(外文):Uninterruptible Power System with Power Circulation Test
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):陳科宏
余國瑞
謝耀慶
口試委員(外文):Chen, Ke-Horng
Yu, Gwo-Ruey
Hsieh, Yao-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:104061467
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:80
中文關鍵詞:不斷電系統三相四線式半橋換架構分切合整數位控制負載阻抗估測循環功能測試
外文關鍵詞:uninterruptible power systemthree-phase four-wire inverterD-Σ digital controlload impedance estimationcirculation test
相關次數:
  • 推薦推薦:0
  • 點閱點閱:496
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
摘 要
本研究設計製作一部三相四線半橋換流器,控制核心是Renesas RX62T微控制器,進行不斷電系統的循環功能測試。控制上採用分切合整數位控制法,並加上負載阻抗估測法則,使換流器輸出穩定三相弦波電壓。在不斷電系統的負載端,接入另一部轉換器進行抽載,然後輸出到不斷電系統的直流端,透過控制電流來模擬不同的負載情況,以完成不斷電系統的循環功能測試。在不斷電系統的直流輸入端,採用換流器連接電網,透過功因校正器和整流提供直流電壓,供給系統使用。
本研究免除傳統的abc至dq 軸轉換,而使用分切合整數位控制,可以簡化控制法則的推導過程。由於本研究採用三相四線半橋架構,結合正弦脈寬調變(Sinusoidal Pulse Width Modulation, SPWM),可以把三相換流器等效成三個單相換流器,分別進行控制,這一點也減輕了控制的複雜程度。電感值會隨電流大小而改變,分切合整控制法會將這一點納入考量,避免了因電感值衰減,所可能造成的輸出波形失真。
由於很難找到耐瓦數足夠大的負載,並且三相半橋架構可以等效成三個獨立的單相半橋架構,本研究透過單相循環的方式來驗證不斷電系統的功能。由第一相把市電輸入整流成穩定的直流電壓;第二相換流器使用第一相輸出的直流,運用分切合整法,換流出不斷電系統的交流輸出;第三相模擬不斷電系統的負載,透過電流控制將第二相的UPS交流輸出整流成直流,並送回系統直流端。單相循環測試能夠簡潔、方便地模擬不斷電系統的多種負載、多種功率等級,並且因為第三相等效的負載將能量送回直流端,所以整個測試系統實際上僅僅消耗了導通和切換造成的損失,大大降低了傳統測試所帶來的電能浪費。
本研究的主要貢獻:第一點為採用分切合整數位控制法,無需傳統abc至dq 

軸轉換處理,降低了複雜度,並且可考慮電感值變化;第二點是採用單相循環測試的方法,可以方便、低成本地模擬各種類型的負載;第三點是採用波峰波谷同時取樣更新方法,在不改變開關實際切換頻率的前提下,有效地減輕波形失真與振盪。

關鍵字:不斷電系統、三相四線式半橋換架構、分切合整數位控制、負載阻抗估測、循環功能測試。
Abstract
This study adopts a three-phase four-wire half-bridge circuit architecture with a control core, Renesas RX62T microcontroller, to design and implement a converter for uninterruptible power system (UPS) circulation test. With the division-summation (D-Σ) digital control and load impedance estimation, the inverter can output stable three-phase sinusoidal voltage. At load side of a UPS, another converter is used for rectification and then output to the dc link of a UPS. It can easily simulate different load conditions with a current control to complete the UPS function test. As for the dc input, a converter is connected to the grid to draw power with power factor correction and rectification.
With the D-Σ digital control, instead of the conventional abc-dq frame transformation, derivation of the plant and control law can be significantly simplified. Moreover, an SPWM combined with D-Σ digital control can divide a three-phase inverter into three single-phase inverters and reduce complexity of control. The D-Σ digital control can take into account inductance variation with current change to avoid output voltage distortion.
Because it is difficult to find a load with high enough power rating and the three-phase half-bridge inverter can be equivalent to three independent single-phase half-bridge ones, this study verifies the function of a UPS with single-phase circulation test. The first phase of the converter is used to rectify grid voltage into stable dc voltage, the second phase converters the dc voltage into ac voltage output, and the third phase simulates various load conditions and converts the ac output into dc with a current control, which is circulated back to the dc bus. The single-phase circulation test can easily simulate different kinds of load with different power ratings. And because the third phase recycles energy back to the dc bus, the entire test system supplies only the power due to conduction and switching losses, greatly reducing power waste of a conventional test.
The main contributions of this study: Firstly, the division-summation (D-Σ) digital control avoids the conventional abc to dq frame transformation, which has reduced control complexity and considered filter inductance variation. The second point is to use a single-phase circulation test, which simulates various types of load readily with low cost. Thirdly, we sample signals and update controls on the crest and trough of a switching cycle, without changing switching frequency, which can effectively reduce distortion and oscillation at the output voltage.

Keywords: uninterruptible power system, three-phase four-wire inverter, D-Σ digital control, load impedance estimation, circulation test.
目錄
誌 謝 I
摘 要 II
Abstract IV
目 錄 II
圖目錄 II
表目錄 XIII
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 1
1-2-1 不斷電系統架構簡介 2
1-2-2 換流器架構 5
1-2-3 換流器控制方法 8
1-3 論文大綱 11
第二章 系統架構與分切合整數位控制法 12
2-1 系統架構 12
2-2 分切合整數位控制法 13
2-2-1 分切與合整 13
2-2-2 控制法則 17
2-2-3 負載阻抗估測 18
第三章 系統周邊電路 22
3-1 輔助電源 22
3-2 開關驅動電源 23
3-3 電壓箝位電路 24
3-4 精密全波整流電路 25
3-5 零交越判斷電路 26
3-6 交流電壓回授電路 26
3-7 電感電流回授電路 28
3-8 直流鏈電壓回授電路 29
3-9 直流鏈預充電路 30
3-10上下臂開關隔離驅動電路 31
3-11 電網電壓偵測電路 32
3-12 電網隔離電路 33
3-13 輔助電源偵錯電路(Power Good) 34
3-14 緊急關閉電路 35
第四章 韌體規劃 36
4-1 RX62T群組微控制器簡介 36
4-2 主程式流程規劃 39
4-3 A/D中斷副程式流程規劃 40
第五章 實驗結果 43
5-1 換流器規格與元件選用 43
5-2 實務考量 44
5-2-1 電感值變化 44
5-2-2 A/D取樣與PWM輸出設定 47
5-2-3 開關死區補償 48
5-2-4 回授電路中的濾波電容設計 49
5-3 換流器模擬系統建模 50
5-4 單相循環測試模擬與實測波形 53
5-4-1 電阻性負載和空載 53
5-4-2 電感性負載 60
5-4-3 電容性負載 65
5-4-4 非線性負載 70
5-4-5 直流穩壓 71
5-5 總諧波失真率 73
第六章 結論與未來研究方向 74
6-1 結論 74
6-2 未來研究方向 74
參考文獻 77





參考文獻
[1] J. Ma, Z. Shao, X. Nie, B. Liu and X. Wang, "An application of optimized repetitive control in uninterruptible power system," 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, 2016, pp. 1633-1637.
[2] D. Matsumoto, "Development of modular concept uninterruptible power system," 2015 IEEE International Telecommunications Energy Conference (INTELEC), Osaka, 2015, pp. 1-6.
[3] Ba. Wei, J. C. Vásquez, J. M. Guerrero and X. Guo, "Control architecture for paralleled current-source-inverter (CSI) based uninterruptible power systems (UPS)," 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, 2016, pp. 151-156.
[4] C. Zhang, J. M. Guerrero, J. C. Vasquez and E. A. A. Coelho, "Control Architecture for Parallel-Connected Inverters in Uninterruptible Power Systems," in IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5176-5188, July 2016.
[5] B. P. Roberts, "Off Line UPS for Computer Power Applications," Telecommunications Energy Conference, 1982. INTELEC 1982. International, Washington, DC, USA, 1982, pp. 61-64.
[6] R. A. Modesto, S. A. Oliveira da Silva and A. A. de Oliveira, "Line-interactive UPS system applied to three-phase four-wire systems with universal filtering capabilities," 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, 2014, pp. 1858-1865.
[7] M. F. Apolinário, R. P. Torrico-Bascopé and S. Daher, "A 110V/220V grid voltage on-line UPS based on High Frequency isolated four-port circuit," 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), Fortaleza, 2015, pp. 1-6.
[8] N. Chudoung and S. Sangwongwanich, “A Simple Carrier-Based PWM Method for Three-Phase Four-Leg Inverters Considering All Four Pole Voltages Simultaneously,” International Conference on Power Electronics and Drive Systems, pp. 1020-1027, Nov. 2007.
[9] A. Bellini and S. Bifaretti, “A Simple Control Technique for Three-Phase Four-Leg Inverters,” International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 1143-1148, May. 2006.
[10] E. Ortjohann, A. Mohd, N. Hamsic, and M. Lingemann, “Design and Experimental Investigation of Space Vector Modulation for Three-Leg Four- Wire Voltage Source Inverters,” European Conference on Power Electronics and Applications, pp. 1-6, Sep. 2009.
[11] X. Guo, R. He, J. Jian, Z. Lu, X. Sun, and J. M. Guerrero, “Leakage Current Elimination of Four-Leg Inverter for Transformerless Three-Phase PV System,” IEEE Trans. on Power Electronics, vol. 31, no. 3, pp. 1841-1846, Mar. 2016.
[12] M. V M. Kumar and M. K. Mishra, “A Three-Leg Inverter Based DSTATCOM Topology for Compensating Unbalanced and Nonlinear Loads,” IEEE International Conference on Power Electronics, pp. 1-6, Dec. 2014.
[13] J. D. Kooning, B. Meersman, T. Vandoorn, B. Renders, and L. Vandevelde, “Comparison of Three-Phase Four-Wire Converters for Distributed Generation,” Universities Power Engineering Conference, pp. 1-6, Sep. 2010.
[14] K. H. Ang, G. Chong, and Y. Li, “PID Control System Analysis, Design, and Technology,” IEEE Trans. on Control Systems Technology, vol. 13, no. 4, pp. 559-576, Jul. 2005.
[15] P. R. Ouyang, V. Pano, and T. Dam, “PID Contour Tracking Control in Position Domain,” International Symposium on Industrial Electronics, pp. 1297-1302, May. 2012.
[16] W. Yu and X. Li, “Stable PID Control for Robot Manipulator with Neural Compensation,” IEEE Conference on Decision and Control, pp. 5398-5403, Dec. 2012.
[17] J. D. Li, S. Z. Wei, W. Qiong, and X. Peng, “A Switching-Inverter Power Controller Based on Fuzzy Adaptive PID” IEEE International Forum on Strategic Technology, pp. 695-699, Aug. 2011.
[18] C. Qin, Q. Wang, Q. Chen, G. Li, and C. Hu, “Application of Fuzzy PID with Loss Balancing Control in Three-Level Active NPC Inverter,” IEEE Conference on Industrial Electronics and Applications, pp. 1466-1470, Jun. 2015.
[19] D. Chen, J. Zhang, and Z. Qian, “An Improved Repetitive Control Scheme for Grid-Connected Inverter with Frequency-Adaptive Capability,” IEEE Trans. on Industrial Electronics, vol. 60, no. 2, pp. 814-823, Feb. 2013.
[20] M. Wu, B. Xu, W. Cao, and J. She, “Aperiodic Disturbance Rejection in Repetitive-Control Systems,” IEEE Trans. on Control Systems Technology, vol. 22, no. 3, pp. 1044-1051, May. 2014.
[21] T.-Y. Doh and J. R. Ryoo, “Robust Repetitive Controller Design and Its Application on the Track-Following Control System in Optical Disk Drives,” IEEE Conference on Decision and Control and European Control Conference, pp. 1644-1649, Dec. 2011.
[22] M. S. Khireddine, M. Makhloufi, Y. Abdessemed, and A. Boutarafa, “Tracking Power Photovoltaic System with a Fuzzy Logic Strategy,” IEEE International Conference on Computer Science and Information Technology, pp. 42-49, Mar. 2014.
[23] G. R. Yu and J. S. Wei, “Fuzzy Control of a Bi-Directional Inverter with Nonlinear Inductance for DC Microgrids,” IEEE International Conference on Fuzzy Systems, pp. 1941-1945, Jun. 2011.
[24] S. A. Krishna and L. Abraham, “Boost Converter Based Power Factor Correction for Single Phase Rectifier Using Fuzzy Logic Control,” IEEE International Conference on Computational Systems and Communications, pp. 122-126, Dec. 2014.
[25] 吳佳穎,高功率雙向三相四線半橋式轉換器研製,國立清華大學電機工程研究所碩士論文,2015年7月。
[26] 李柏宏,分切合整數位控制之20 kVA三相四線式多功能換流器研製,國立清華大學電機工程研究所碩士論文,2015年7月。
[27] NXP Semiconductors, UC3842 Datasheet, 1994
[28] BYD BSH-1000ICV5M Datasheet.
[29] NXP Semiconductors, 74HC244 Datasheet, rev. 4, 2012
[30] TOSHIBA, TLP358 Datasheet, rev. 3, 2015
[31] Renesas Electronics, “RX62T/62G Group Datasheet,“ Jan. 2014.
[32] Chang Sung Corporation (CSC), “Magnetic Powder Cores,” www.changsung.com, ver. 13.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *