帳號:guest(18.218.8.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫乙立
作者(外文):Sun, Aileen Y.
論文名稱(中文):探討基材誘發金屬奈米粒子之近場電漿行為及其於表面增益拉曼散射之應用
論文名稱(外文):A Fundamental Study on Substrate-induced Near-field Plasmonics of Metal Nanoparticles for Surface-enhanced Raman Spectroscopy
指導教授(中文):萬德輝
指導教授(外文):Wan, Dehui
口試委員(中文):陳學禮
柯富祥
口試委員(外文):Chen, Hsuen-Li
Ko, Fu-Hsiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:104038512
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:86
中文關鍵詞:局域性表面電漿共振基材誘發電漿行為影像電荷三維時域有限差分法表面增益拉曼散射
外文關鍵詞:localized surface plasmon resonancesubstrate-induced plasmonicsimage dipolethree-dimensional finite-difference time domainsurface-enhanced Raman spectroscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:119
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
貴重金屬奈米粒子的局域性表面電漿共振(localized surface plasmon resonance, LSPR)發生時,能在其表面產生電場,此電場能與貴重金屬基材(如金或銀)之薄膜耦合,使電場強度獲得大幅增益。在本論文中,我們利用三維時域有限差分法 (three-dimensional finite-difference time domain, 3D-FDTD) 進行光學模擬分析,探討銀及金奈米粒子在不同金屬、半導體及介電材料上的近場光學行為。我們發現除一般認知的貴重金屬外,非貴重金屬如鋁及銅等基材,甚至半導體材料如矽,皆能與奈米粒子耦合,使奈米粒子與基材間隙耦合的電場增強。其中,銀奈米粒子與鋁基材所誘發的電場,其強度與銀基材誘發之電場強度匹敵,而金奈米粒子則能和銅基材產生強度與金基材匹配之電場。除不同金屬奈米粒子與基材組合之探討,我們也調控奈米粒子之大小及其環境折射率。隨奈米粒子尺寸增大,奈米粒子能在基材內產生的影像電荷體積越大,耦合所誘發之電場也越強。而隨奈米粒子與基材所處的環境折射率上升,奈米粒子與基材產生耦合的波段除逐漸紅移,所產生之電場強度以及局域性之電場範圍也有明顯增益。因此,除了透過選用不同奈米粒子及基材組合,使得強電場強之波段能從390 nm調控至600 nm;搭配不同的粒子大小及環境折射率,亦可擴大強電場之波段可調性。
除模擬分析外,本研究也將銀奈米粒子自組裝在不同基材上,並量測不同偏振態入射光的變角度反射光譜,觀察s偏振及p偏振光隨入射角度增大造成遠場光譜的差異。最後,我們利用拉曼散射標的分子羅丹明(rhodamine 6G, R6G)、腎功能指標分子基酸酐(creatinine)、食物新鮮度指標生物胺分子組織胺(histamine)以及極紫外光微影技術中的汙染物對丁基苯環(tert-butylbenzene)的拉曼光譜訊號增益來展示銀奈米粒子和基材耦合所誘發之電場增益。
In this thesis, we systematically investigated the fundamental optical properties of plasmonic nanoparticles utilizing the three-dimensional finite-difference time domain (3D-FDTD) method. The localized surface plasmon resonance (LSPR) property of plasmonic nanoparticles has been known to couple with noble metal substrates, such as silver and gold films, to induce a strong electric field (E field) enhancement at the nanoparticle-substrate (NP-S) gap. In this study, we compared various metal, semiconducting, and dielectric substrate combinations to examine the effect of substrate material on the NP-S coupling of silver nanoparticle (AgNP) and gold nanoparticle (AuNP). In particular, for AgNP, the aluminum and silicon substrates can produce considerably strong E field enhancement, with aluminum inducing an E field enhancement comparable in intensity to that induced by a silver substrate. Besides, for AuNP, a copper substrate was able to produce and E field intensity nearly as large as those induced by noble metal films. By altering the nanoparticle size, NP-S coupling could be enhanced as the nanoparticle increased in size, resulting from larger volume of image charges that allowed for NP-S coupling. Furthermore, the effect of environmental refractive index was observed: the NP-S coupling wavelength redshifted, along with the increase in the local E field intensity at the NP-S gap and enlargement of strong E field distribution. The different combinations of substrate material and nanoparticle composition allowed the enhanced E field to occur over a wide spectral range from 390 to 600 nm. By taking into account the effects of nanoparticle size and environmental refractive index, the tunable spectral range can be further expanded. This is an important feature as a variety of combinations can be chosen for the desired E field enhancement specific to particular applications.
In additional to theoretical simulations, AgNPs were immobilized on Al and Si substrates and their variable angle reflectance spectra were obtained for the experimental demonstrations of NP-S coupling at the far-field. Dramatic differences between s- and p-polarized reflectance at high incidence angles were observed, indicating greater NP-S interaction for p-polarized incidence. Finally, Raman spectroscopy of rhodamonie 6G (R6G, a common Raman signal probe), creatinine (kidney health indicator), histamine (a biogenic amine used as food freshness indicator), and tert-butylbenzene [extreme ultraviolet (EUV) lithography contaminant] were measured with aluminum or silicon substrates immobilized with AgNPs, to experimentally demonstrate the enhanced Raman signals contributed from the significant E fields of NP-S coupling.
致謝 I
摘要 II
Abstract III
Table of Contents V
List of Figures VIII
List of Tables XVI
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Structure 1
Chapter 2 Literature Review 3
2.1 Localized Surface Plasmon Resonance of Metal Nanoparticles 3
2.1.1 Dipolar Localized Surface Plasmon Resonance of Metal Nanoparticles 3
2.1.2 Quadrupolar Surface Plasmon Resonance of Metal Nanoparticles 6
2.1.3 Coupling between Localized Surface Plasmons of Metal Nanoparticles 8
2.1.4 Coupling between Localized Surface Plasmons of Metal Nanoparticles and Substrates 12
2.2 Surface-enhanced Raman Spectroscopy 17
2.2.1 Background and Principle 17
2.2.2 Applications 20
Chapter 3 Utilizing the Extraordinary Electric Field Enhancement Arising from Non-noble Metal Substrate-induced Interfacial Plasmonics with Metal Nanoparticles for Surface-enhanced Raman Spectroscopy (SERS) 23
3.1 Purpose of Work 23
3.2 Experimental Methods 24
3.2.1 Materials 24
3.2.2 Instrumentation 24
3.2.3 Procedures 25
3.3.2.1 Optical Simulation 25
3.2.3.2 Synthesis of Silver Nanoparticles (AgNPs) 26
3.2.3.3 Immobilization of Silver Nanoparticle Arrays on Metals and Semiconductors 26
3.2.3.4 Raman Spectroscopy 26
3.3 Results and Discussion 27
3.3.1 Effect of Substrate Material on Nanoparticle-substrate Coupling 27
3.3.1.1 Silver Nanoparticle in Free Space 28
3.3.1.2 Silver Nanoparticle on Metal Substrates 30
3.3.1.3 Silver Nanoparticle on Semiconducting and Dielectric Substrates 38
3.3.2 Effect of Nanoparticle Composition on Nanoparticle-substrate Coupling 41
3.3.2.1 Gold Nanoparticle in Free Space 42
3.3.2.2 Gold Nanoparticle on Metal Substrates 43
3.3.2.3 Gold Nanoparticle on Semiconducting and Dielectric Substrates 47
3.3.2.4 Comparison between Silver and Gold Nanoparticle on Different Substrates 51
3.3.3 Effect of Nanoparticle Size on Nanoparticle-substrate Coupling 53
3.3.4 Effect of Environmental Refractive Index on Nanoparticle-substrate Coupling 56
3.3.5 Effect of Incidence Polarization on Nanoparticle-substrate Coupling 62
3.3.6 AgNPs on Metal/Dielectric Substrates for Surface-enhanced Raman Spectroscopy 66
3.3.6.1 SERS Spectra of Rhodamine 6G on AgNPs on Metal and Dielectric Substrates 66
3.3.6.2 SERS Detection of Creatinine on AgNPs on Al Substrate 68
3.3.6.3 SERS Detection of Biogenic Amines on AgNPs on Al Substrate 69
3.3.6.4 SERS Detection of Tert-butylbenzene on AgNPs on Si Substrate 71
3.4 Summary 73
Chapter 4. Conclusion 75
4.1 Summary of Work 75
4.2 Future Work and Prospects 75
References 76
Publications and Awards List 84
A. Journal Papers 84
B. Conference Papers 84
C. Awards and Honors 85

1. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
2. Hao, E.; Li, S.; Bailey, R. C.; Zou, S.; Schatz, G. C.; Hupp, J. T., Optical properties of metal nanoshells. The Journal of Physical Chemistry B 2004, 108 (4), 1224-1229.
3. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K.; Schatz, G. C.; Zheng, J., Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294 (5548), 1901-1903.
4. Kurouski, D.; Large, N.; Chiang, N.; Greeneltch, N.; Carron, K. T.; Seideman, T.; Schatz, G. C.; Van Duyne, R. P., Unraveling near-field and far-field relationships for 3D SERS substrates–a combined experimental and theoretical analysis. Analyst 2016, 141 (5), 1779-1788.
5. Liu, X.; Li, D.; Sun, X.; Li, Z.; Song, H.; Jiang, H.; Chen, Y., Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers. Scientific reports 2015, 5.
6. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20.
7. Yonzon, C. R.; Haynes, C. L.; Zhang, X.; Walsh, J. T.; Van Duyne, R. P., A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Analytical Chemistry 2004, 76 (1), 78-85.
8. Jensen, T.; Van Duyne, R.; Johnson, S.; Maroni, V., Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons. Applied Spectroscopy 2000, 54 (3), 371-377.
9. Nylander, C.; Liedberg, B.; Lind, T., Gas detection by means of surface plasmon resonance. Sensors and Actuators 1982, 3, 79-88.
10. Haes, A. J.; Chang, L.; Klein, W. L.; Van Duyne, R. P., Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. Journal of the American Chemical Society 2005, 127 (7), 2264-2271.
11. Englebienne, P., Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 1998, 123 (7), 1599-1603.
12. Mayer, K. M.; Hafner, J. H., Localized surface plasmon resonance sensors. Chemical reviews 2011, 111 (6), 3828-3857.
13. Nishi, H.; Hiroya, S.; Tatsuma, T., Potential-scanning localized surface plasmon resonance sensor. ACS nano 2015, 9 (6), 6214-6221.
14. Maier, S. A., Plasmonics: fundamentals and applications. Springer Science & Business Media: 2007.
15. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications: 2003.
16. Zhong, Z.; Patskovskyy, S.; Bouvrette, P.; Luong, J. H.; Gedanken, A., The surface chemistry of Au colloids and their interactions with functional amino acids. The Journal of Physical Chemistry B 2004, 108 (13), 4046-4052.
17. Wu, C.; Xu, Q.-H., Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir 2009, 25 (16), 9441-9446.
18. Lee, J.-H.; Nam, J.-M.; Jeon, K.-S.; Lim, D.-K.; Kim, H.; Kwon, S.; Lee, H.; Suh, Y. D., Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells. ACS nano 2012, 6 (11), 9574-9584.
19. Wustholz, K. L.; Henry, A.-I.; McMahon, J. M.; Freeman, R. G.; Valley, N.; Piotti, M. E.; Natan, M. J.; Schatz, G. C.; Duyne, R. P. V., Structure− activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. Journal of the American Chemical Society 2010, 132 (31), 10903-10910.
20. Lee, H.; Kim, G.-H.; Lee, J.-H.; Kim, N. H.; Nam, J.-M.; Suh, Y. D., Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries. Nano Lett 2015, 15 (7), 4628-4636.
21. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P., A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302 (5644), 419-422.
22. Nordlander, P.; Prodan, E., Plasmon hybridization in nanoparticles near metallic surfaces. Nano Letters 2004, 4 (11), 2209-2213.
23. Le, F.; Lwin, N.; Steele, J.; Käll, M.; Halas, N.; Nordlander, P., Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. Nano Letters 2005, 5 (10), 2009-2013.
24. Knight, M. W.; Wu, Y.; Lassiter, J. B.; Nordlander, P.; Halas, N. J., Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano letters 2009, 9 (5), 2188-2192.
25. Wu, Y.; Nordlander, P., Finite-difference time-domain modeling of the optical properties of nanoparticles near dielectric substrates. The Journal of Physical Chemistry C 2009, 114 (16), 7302-7307.
26. Wang, H.; Wu, Y.; Lassiter, B.; Nehl, C. L.; Hafner, J. H.; Nordlander, P.; Halas, N. J., Symmetry breaking in individual plasmonic nanoparticles. Proceedings of the National Academy of Sciences 2006, 103 (29), 10856-10860.
27. Knight, M. W.; Halas, N. J., Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit. New Journal of Physics 2008, 10 (10), 105006.
28. Swanglap, P.; Slaughter, L. S.; Chang, W.-S.; Willingham, B.; Khanal, B. P.; Zubarev, E. R.; Link, S., Seeing double: coupling between substrate image charges and collective plasmon modes in self-assembled nanoparticle superstructures. Acs Nano 2011, 5 (6), 4892-4901.
29. Lei, D. Y.; Fernández-Domínguez, A. I.; Sonnefraud, Y.; Appavoo, K.; Haglund Jr, R. F.; Pendry, J. B.; Maier, S. A., Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. Acs Nano 2012, 6 (2), 1380-1386.
30. Ding, T.; Sigle, D.; Zhang, L.; Mertens, J.; de Nijs, B.; Baumberg, J., Controllable tuning plasmonic coupling with nanoscale oxidation. ACS nano 2015, 9 (6), 6110-6118.
31. Chikkaraddy, R.; Zheng, X.; Benz, F.; Brooks, L. J.; de Nijs, B.; Carnegie, C.; Kleemann, M.-E.; Mertens, J.; Bowman, R. W.; Vandenbosch, G. A., How Ultranarrow Gap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirror. 2017.
32. Huang, Y. F.; Zhang, M.; Zhao, L. B.; Feng, J. M.; Wu, D. Y.; Ren, B.; Tian, Z. Q., Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angewandte Chemie International Edition 2014, 53 (9), 2353-2357.
33. Lee, J.; Hua, B.; Park, S.; Ha, M.; Lee, Y.; Fan, Z.; Ko, H., Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. Nanoscale 2014, 6 (1), 616-623.
34. Hu, J.; Tanabe, M.; Sato, J.; Uosaki, K.; Ikeda, K., Effects of atomic geometry and electronic structure of platinum surfaces on molecular adsorbates studied by gap-mode SERS. Journal of the American Chemical Society 2014, 136 (29), 10299-10307.
35. Ikeda, K.; Fujimoto, N.; Uosaki, K., Nanoscale Optical and Mechanical Manipulation of Molecular Alignment in Metal–Molecule–Metal Structures. The Journal of Physical Chemistry C 2014, 118 (37), 21550-21557.
36. Wang, H.; Liu, T.; Huang, Y.; Fang, Y.; Liu, R.; Wang, S.; Wen, W.; Sun, M., Plasmon-driven surface catalysis in hybridized plasmonic gap modes. Scientific reports 2014, 4.
37. Bryche, J.-F.; Gillibert, R.; Barbillon, G.; Gogol, P.; Moreau, J.; de La Chapelle, M. L.; Bartenlian, B.; Canva, M., Plasmonic enhancement by a continuous gold underlayer: application to SERS sensing. Plasmonics 2016, 11 (2), 601-608.
38. Raman, C. V.; Krishnan, K. S., A new type of secondary radiation. Nature 1928, 121, 501-502.
39. Dent, G.; Smith, G., Modern Raman spectroscopy: a practical approach. Wiley: 2005.
40. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166.
41. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical society reviews 1998, 27 (4), 241-250.
42. Moskovits, M., Surface-enhanced spectroscopy. Reviews of modern physics 1985, 57 (3), 783.
43. Lee, J.-H.; You, M.-H.; Kim, G.-H.; Nam, J.-M., Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes. Nano letters 2014, 14 (11), 6217-6225.
44. Lim, D.-K.; Jeon, K.-S.; Hwang, J.-H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J.-M., Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nature nanotechnology 2011, 6 (7), 452-460.
45. Oh, J.-W.; Lim, D.-K.; Kim, G.-H.; Suh, Y. D.; Nam, J.-M., Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. Journal of the American Chemical Society 2014, 136 (40), 14052-14059.
46. Kang, J. W.; So, P. T.; Dasari, R. R.; Lim, D.-K., High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap. Nano letters 2015, 15 (3), 1766-1772.
47. Im, H.; Bantz, K. C.; Lindquist, N. C.; Haynes, C. L.; Oh, S.-H., Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano letters 2010, 10 (6), 2231-2236.
48. Li, J.; Skeete, Z.; Shan, S.; Yan, S.; Kurzatkowska, K.; Zhao, W.; Ngo, Q. M.; Holubovska, P.; Luo, J.; Hepel, M., Surface Enhanced Raman Scattering Detection of Cancer Biomarkers with Bifunctional Nanocomposite Probes. Analytical chemistry 2015, 87 (21), 10698-10702.
49. Ma, Y.; Liu, H.; Mao, M.; Meng, J.; Yang, L.; Liu, J., Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine. Analytical chemistry 2016, 88 (16), 8145-8151.
50. Zhou, L.; Tan, Y.; Wang, J.; Xu, W.; Yuan, Y.; Cai, W.; Zhu, S.; Zhu, J., 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics 2016, 10 (6), 393-398.
51. Tian, Z.-Q.; Ren, B.; Li, J.-F.; Yang, Z.-L., Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chemical Communications 2007, (34), 3514-3534.
52. Pinchuk, A.; Hilger, A.; von Plessen, G.; Kreibig, U., Substrate effect on the optical response of silver nanoparticles. Nanotechnology 2004, 15 (12), 1890.
53. Yu, B.; Woo, J.; Kong, M.; O'Carroll, D. M., Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system. Nanoscale 2015, 7 (31), 13196-13206.
54. Macleod, H. A., Thin-film optical filters. CRC press: 2001.
55. Chen, S.-Y.; Mock, J. J.; Hill, R. T.; Chilkoti, A.; Smith, D. R.; Lazarides, A. A., Gold nanoparticles on polarizable surfaces as raman scattering antennas. ACS nano 2010, 4 (11), 6535-6546.
56. Saatkamp, C. J.; de Almeida, M. L.; Bispo, J. A. M.; Pinheiro, A. L. B.; Fernandes, A. B.; Silveira, L., Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease. Journal of biomedical optics 2016, 21 (3), 037001-037001.
57. Hill, S.; Faradzhev, N.; Richter, L.; Lucatorto, T. In Complex species and pressure dependence of intensity scaling laws for contamination rates of EUV optics determined by XPS and ellipsometry, Proc. SPIE, 2010; p 76360E.
58. Xie, L.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z., Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. Journal of the American Chemical Society 2009, 131 (29), 9890-9891.
59. He, X. N.; Gao, Y.; Mahjouri-Samani, M.; Black, P.; Allen, J.; Mitchell, M.; Xiong, W.; Zhou, Y.; Jiang, L.; Lu, Y., Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology 2012, 23 (20), 205702.
60. Shipp, D.; Sinjab, F.; Notingher, I., Raman spectroscopy: techniques and applications in the life sciences. Advances in Optics and Photonics 2017, 9 (2).
61. Dou, X.; Yamaguchi, Y.; Yamamoto, H.; Doi, S.; Ozaki, Y., Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer. Vibrational spectroscopy 1996, 13 (1), 83-89.
62. Landete, J. M.; de las Rivas, B.; Marcobal, A.; Muñoz, R., Molecular methods for the detection of biogenic amine-producing bacteria on foods. International journal of food microbiology 2007, 117 (3), 258-269.
63. Collado, J.; Ramirez, F., Infrared and Raman spectra of histamine-Nh4 and histamine-Nd4 monohydrochlorides. Journal of Raman spectroscopy 1999, 30 (5), 391-397.
64. Ghazanfar, S.; Edsall, J. T.; Myers, D. V., Raman spectra of diamines and diammonium ions: effects of ionization on carbon-hydrogen stretching frequencies. Journal of the American Chemical Society 1964, 86 (4), 559-564.
65. Niibe, M.; Koida, K.; Kakutani, Y. In Contamination experiments for Mo/Si multilayer mirrors with the use of single-bunch synchrotron radiation, Journal of Physics: Conference Series, IOP Publishing: 2013; p 132021.
66. Chen, J.; Louis, E.; Lee, C. J.; Wormeester, H.; Kunze, R.; Schmidt, H.; Schneider, D.; Moors, R.; van Schaik, W.; Lubomska, M., Detection and characterization of carbon contamination on EUV multilayer mirrors. Optics express 2009, 17 (19), 16969-16979.
67. Lin-Vien, D.; Colthup, N. B.; Fateley, W. G.; Grasselli, J. G., The handbook of infrared and Raman characteristic frequencies of organic molecules. Elsevier: 1991.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *