帳號:guest(52.15.196.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曹育翔
作者(外文):Tsao, Yu-Hsiang
論文名稱(中文):自驅動熱電感測系統應用於汞離子的偵測
論文名稱(外文):A Self-Powered Thermoelectric Sensing System for the Detection of Mercury Ions
指導教授(中文):林宗宏
指導教授(外文):Lin, Zong-Hong
口試委員(中文):黃郁棻
陳建甫
口試委員(外文):Huang, Yu-Fen
Chen, Chien-Fu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:104038505
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:53
中文關鍵詞:自驅動熱電感測系統汞離子感測器碲奈米線陣列碲化汞奈米線熱電效應
外文關鍵詞:Self-powered thermoelectric sensing systemMercury detectionTellurium nanowiresTelluride nanowiresThermoelectricity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,環境友善與永續發展已成為現代重要的議題,而汞離子的偵測更是環境汙染物中重要的指標之一。傳統的分析方法大多使用冷蒸汽原子吸收光譜儀(CV-AAS)來做測定,流程為將樣品中的汞經強酸氧化成為兩價汞離子後,以還原劑還原成汞原子,再經由氣體載送至吸收管,最後以原子吸收光譜儀在波長 253.7 nm處之最大吸光度定量之。由於目前的方法程序繁瑣複雜,因此如何以更簡便、快速、低成本的方式,來進行檢測汞離子的濃度,一直以來是科學家研究的目標。在本研究中,我們基於碲奈米線陣列,在特定的條件下易於與汞離子反應形成碲化汞奈米線的現象,設計出一自驅動熱電感測系統。在此系統中,其增幅的輸出電壓與汞離子濃度之間存在著正相關的關係,當溫差為35K時,在汞離子濃度為10 μM其輸出電壓可達 2.5 mV。另外,在本系統中,我們同時將其他金屬離子與碲奈米線陣列進行反應,結果證實碲奈米線陣列對於汞離子具有選擇性,其熱電電壓輸出明顯高於其他離子。我們成功地開發出輕、薄且成本低廉的熱電感測試片,並且實際量測生活中樣品,例如:湖泊、溪流,並進一步證明此系統的可行性。我們相信此自驅動感測系統的開發,再經過適當的修飾與工法,在未來還有其他的應用潛力,諸如:生物分子、特定化學物質……等等。


關鍵字:自驅動熱電感測系統、汞離子感測器、碲奈米線陣列、碲化汞奈米線、熱電效應
It is common knowledge that the mercury is a pollutant of pressing global concern. The atomic absorption/emission spectrometry is a widespread strategy to detect the mercury ion, however, some drawbacks of this method such as the requirement of complicated pre-concentrations and time-consuming procedure. To overcome these difficulties of the traditional mercury detection methods, many efforts have been devoted to development of various methods and strategies for monitoring the concentration of mercury ion in environment. In this work, we report a self-powered sensing system for the detection of mercury ions based on the thermoelectric mechanism and without external energy. It is demonstrated by the mechanism of reaction between mercury ion and tellurium nanowires (Te NWs) which could be synthesized to the mercury telluride nanowire (HgTe NWs). The amount of HgTe NWs will enhance the output of thermoelectric performance. The output voltage of nanowires reacted with 10 μM mercury ion will reach to 2.5 mV at the Δ T = 35 K. We successfully demonstrate a self-powered thermoelectric sensing system with selectivity, and prove the applicability of the self-powered thermoelectric sensing system to real samples. We believe that this system has potential in application of other detection such as biomolecule and toxic chemicals.

Key Word: Self-powered thermoelectric sensing system, Mercury detection, tellurium nanowires, mercury telluride nanowires, Thermoelectricity.
Contents
摘要 II
Abstract III
Figure Captions IV
Table Captions VII
Chapter 1 Introduction 1
1.1. The Technology of Detecting Mercury Pollution 1
Chapter 2 Literature Review and Theory 5
2.1 The Characteristic of Telluride 5
2.2 The Thermoelectric Effect 6
2.2.1 The Seebeck Effect 6
2.2.2 The Peltier Effect 8
2.2.3 The Thomson Effect 9
2.3 The Definition of Thermoelectric Material 9
2.4 The Nanotechnology in Thermoelectric Material 10
2.5 The Self-Powered Sensing System 12
Chapter 3 Experimental Section 15
3.1 Material 15
3.2 Apparatus 16
3.3 Method 17
3.3.1 Synthesis of Tellurium Nanowires Array 17
3.3.2 Synthesis of Mercury Telluride Nanowires Array 17
3.3.3 Preparation for hybrid of telluride nanowires with PEDOT: PSS 18
3.3.4 Fabrication of thermoelectric nanogenerator array. 18
3.3.5 Characterization 18
Chapter 4 Results and Discussion 21
4.1 Synthesis and Characterization of Tellurium Nanowires Array 21
4.2 Synthesis and Characterization of Mercury Telluride Nanowires Array 25
4.3 Output Performance of Self-Powered Thermoelectric Sensing System 33
4.4 The Selectivity Test of Self-Powered Thermoelectric Sensing System 38
4.5 The Real Sample Assay 42
Chapter 5 Conclusions 44
Reference 45
Publication 53

Reference
[1] T.W. Clarkson, L. Magos, G.J. Myers, New England Journal of Medicine, 349 (2003) 1731-1737.
[2] F. Zahir, S.J. Rizwi, S.K. Haq, R.H. Khan, Environmental toxicology and pharmacology, 20 (2005) 351-360.
[3] E.M. Nolan, S.J. Lippard, Chemical reviews, 108 (2008) 3443-3480.
[4] I. Onyido, A.R. Norris, E. Buncel, Chemical reviews, 104 (2004) 5911-5930.
[5] P.B. Tchounwou, W.K. Ayensu, N. Ninashvili, D. Sutton, Environmental toxicology, 18 (2003) 149-175.
[6] G. Aragay, J. Pons, A. Merkoçi, Chemical reviews, 111 (2011) 3433-3458.
[7] C.P. Hanna, J.F. Tyson, S. McIntosh, Analytical chemistry, 65 (1993) 653-656.
[8] M. Leermakers, W. Baeyens, P. Quevauviller, M. Horvat, TrAC Trends in Analytical Chemistry, 24 (2005) 383-393.
[9] J.S. Lee, M.S. Han, C.A. Mirkin, Angewandte Chemie International Edition, 46 (2007) 4093-4096.
[10] M.-L. Ho, K.-Y. Chen, L.-C. Wu, J.-Y. Shen, G.-H. Lee, M.-J. Ko, C.-C. Wang, J.-F. Lee, P.-T. Chou, Chemical Communications, (2008) 2438-2440.
[11] H. Zhang, Y. Xia, ACS Sensors, 1 (2016) 384-391.
[12] G.H. Chen, W.Y. Chen, Y.C. Yen, C.W. Wang, H.T. Chang, C.F. Chen, Anal Chem, 86 (2014) 6843-6849.
[13] S. Yoon, E.W. Miller, Q. He, P.H. Do, C.J. Chang, Angewandte Chemie International Edition, 46 (2007) 6658-6661.
[14] C.C. Huang, Z. Yang, K.H. Lee, H.T. Chang, Angewandte Chemie, 119 (2007) 6948-6952.
[15] Z. Gu, M. Zhao, Y. Sheng, L.A. Bentolila, Y. Tang, Analytical chemistry, 83 (2011) 2324-2329.
[16] T. Senapati, D. Senapati, A.K. Singh, Z. Fan, R. Kanchanapally, P.C. Ray, Chemical Communications, 47 (2011) 10326-10328.
[17] Z. Zhu, Y. Su, J. Li, D. Li, J. Zhang, S. Song, Y. Zhao, G. Li, C. Fan, Analytical chemistry, 81 (2009) 7660-7666.
[18] D. Wen, L. Deng, S. Guo, S. Dong, Analytical chemistry, 83 (2011) 3968-3972.
[19] Z. Wang, L. Ma, Coordination Chemistry Reviews, 253 (2009) 1607-1618.
[20] J. Du, B. Zhu, X. Peng, X. Chen, Small, 10 (2014) 3461-3479.
[21] Y. Song, W. Wei, X. Qu, Advanced Materials, 23 (2011) 4215-4236.
[22] K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Chemical reviews, 112 (2012) 2739-2779.
[23] J. Du, L. Jiang, Q. Shao, X. Liu, R.S. Marks, J. Ma, X. Chen, Small, 9 (2013) 1467-1481.
[24] W. Chansuvarn, T. Tuntulani, A. Imyim, TrAC Trends in Analytical Chemistry, 65 (2015) 83-96.
[25] S. Botasini, G. Heijo, E. Méndez, Analytica chimica acta, 800 (2013) 1-11.
[26] D. Liu, Z. Wang, X. Jiang, Nanoscale, 3 (2011) 1421-1433.
[27] Y.-W. Lin, C.-C. Huang, H.-T. Chang, Analyst, 136 (2011) 863-871.
[28] G. Chen, Z. Guo, G. Zeng, L. Tang, Analyst, 140 (2015) 5400-5443.
[29] S.-F. Torabi, Y. Lu, Faraday discussions, 149 (2011) 125-135.
[30] C.-W. Liu, C.-C. Huang, H.-T. Chang, Analytical chemistry, 81 (2009) 2383-2387.
[31] D.W. Domaille, E.L. Que, C.J. Chang, Nature chemical biology, 4 (2008) 168-175.
[32] X.J. Zhu, S.T. Fu, W.K. Wong, J.P. Guo, W.Y. Wong, Angewandte Chemie, 118 (2006) 3222-3226.
[33] O. Del Campo, A. Carbayo, J. Cuevas, A. Munoz, G. Garcia-Herbosa, D. Moreno, E. Ballesteros, S. Basurto, T. Gómez, T. Torroba, Chemical Communications, (2008) 4576-4578.
[34] S.-K. Ko, Y.-K. Yang, J. Tae, I. Shin, Journal of the American Chemical Society, 128 (2006) 14150-14155.
[35] S.V. Wegner, A. Okesli, P. Chen, C. He, Journal of the American Chemical Society, 129 (2007) 3474-3475.
[36] P. Chen, C. He, Journal of the American Chemical Society, 126 (2004) 728-729.
[37] X. Ren, Q.-H. Xu, Langmuir, 25 (2008) 29-31.
[38] K.-Y. Pu, L. Cai, B. Liu, Macromolecules, 42 (2009) 5933-5940.
[39] I.-B. Kim, U.H. Bunz, Journal of the American Chemical Society, 128 (2006) 2818-2819.
[40] X. Liu, Y. Tang, L. Wang, J. Zhang, S. Song, C. Fan, S. Wang, Advanced Materials, 19 (2007) 1471-1474.
[41] M. Park, S. Seo, I.S. Lee, J.H. Jung, Chemical Communications, 46 (2010) 4478-4480.
[42] J. Chen, Y. Gao, Z. Xu, G. Wu, Y. Chen, C. Zhu, Analytica chimica acta, 577 (2006) 77-84.
[43] C.-C. Huang, H.-T. Chang, Analytical chemistry, 78 (2006) 8332-8338.
[44] M. Li, Q. Wang, X. Shi, L.A. Hornak, N. Wu, Analytical chemistry, 83 (2011) 7061-7065.
[45] R. Freeman, T. Finder, I. Willner, Angewandte Chemie International Edition, 48 (2009) 7818-7821.
[46] A.P. Alivisatos, W. Gu, C. Larabell, Annu. Rev. Biomed. Eng., 7 (2005) 55-76.
[47] W.C. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, S. Nie, Current opinion in biotechnology, 13 (2002) 40-46.
[48] R. Zhang, W. Chen, Biosensors and Bioelectronics, 55 (2014) 83-90.
[49] T. Hirschfeld, Applied optics, 15 (1976) 2965-2966.
[50] A.K. Saha, K. Kross, E.D. Kloszewski, D.A. Upson, J.L. Toner, R.A. Snow, C.D. Black, V.C. Desai, Journal of the American Chemical Society, 115 (1993) 11032-11033.
[51] S. Schlücker, Angewandte Chemie International Edition, 53 (2014) 4756-4795.
[52] S. Nie, S.R. Emory, science, 275 (1997) 1102-1106.
[53] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Physical review letters, 78 (1997) 1667.
[54] J.P. Camden, J.A. Dieringer, J. Zhao, R.P. Van Duyne, Accounts of chemical research, 41 (2008) 1653-1661.
[55] T. Kang, S.M. Yoo, I. Yoon, S. Lee, J. Choo, S.Y. Lee, B. Kim, Chemistry–A European Journal, 17 (2011) 2211-2214.
[56] J. Liu, Y. Lu, Angewandte Chemie, 119 (2007) 7731-7734.
[57] D. Han, S.Y. Lim, B.J. Kim, L. Piao, T.D. Chung, Chemical Communications, 46 (2010) 5587-5589.
[58] G. Wang, C. Lim, L. Chen, H. Chon, J. Choo, J. Hong, Analytical and bioanalytical chemistry, 394 (2009) 1827-1832.
[59] E.-O. Ganbold, J.-H. Park, K.-S. Ock, S.-W. Joo, Bulletin of the Korean Chemical Society, 32 (2011) 519-523.
[60] J. Jasieniak, M. Califano, S.E. Watkins, ACS nano, 5 (2011) 5888-5902.
[61] Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Nano Letters, 8 (2008) 2580-2584.
[62] Y. Yang, S. Chen, Nano Letters, 3 (2003) 75-79.
[63] S.-W. Hsu, C. Ngo, A.R. Tao, Nano letters, 14 (2014) 2372-2380.
[64] T. Aoki, D.J. Smith, Y. Chang, J. Zhao, G. Badano, C. Grein, S. Sivananthan, Applied physics letters, 82 (2003) 2275-2277.
[65] T. Zhu, M.N. Chong, Nano Energy, 12 (2015) 347-373.
[66] E. Rephaeli, A. Raman, S. Fan, Nano letters, 13 (2013) 1457-1461.
[67] M. Riskin, R. Tel‐Vered, I. Willner, Advanced Materials, 22 (2010) 1387-1391.
[68] Q. Wang, M. Safdar, Z. Wang, J. He, Advanced Materials, 25 (2013) 3915-3921.
[69] N. Ding, S.F. Chen, D.S. Geng, S.W. Chien, T. An, T. Hor, Z.L. Liu, S.H. Yu, Y. Zong, Advanced Energy Materials, 5 (2015).
[70] H. Azimi, T. Ameri, H. Zhang, Y. Hou, C.O.R. Quiroz, J. Min, M. Hu, Z.G. Zhang, T. Przybilla, G.J. Matt, Advanced Energy Materials, 5 (2015).
[71] J. Cao, M. Safdar, Z. Wang, J. He, Journal of Materials Chemistry A, 1 (2013) 10024-10029.
[72] H.W. Liang, X. Cao, W.J. Zhang, H.T. Lin, F. Zhou, L.F. Chen, S.H. Yu, Advanced Functional Materials, 21 (2011) 3851-3858.
[73] C. Dun, C.A. Hewitt, H. Huang, J. Xu, C. Zhou, W. Huang, Y. Cui, W. Zhou, Q. Jiang, D.L. Carroll, Nano Energy, 18 (2015) 306-314.
[74] C. Zhou, C. Dun, Q. Wang, K. Wang, Z. Shi, D.L. Carroll, G. Liu, G. Qiao, ACS applied materials & interfaces, 7 (2015) 21015-21020.
[75] E.J. Bae, Y.H. Kang, K.-S. Jang, C. Lee, S.Y. Cho, Nanoscale, 8 (2016) 10885-10890.
[76] N.E. Coates, S.K. Yee, B. McCulloch, K.C. See, A. Majumdar, R.A. Segalman, J.J. Urban, Advanced Materials, 25 (2013) 1629-1633.
[77] M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yang, F. Qiu, Energy & Environmental Science, 5 (2012) 8351-8358.
[78] K.C. See, J.P. Feser, C.E. Chen, A. Majumdar, J.J. Urban, R.A. Segalman, Nano letters, 10 (2010) 4664-4667.
[79] C. Jaworski, J. Yang, S. Mack, D. Awschalom, J. Heremans, R. Myers, Nature materials, 9 (2010) 898-903.
[80] J.Y. Oh, J.H. Lee, S.W. Han, S.S. Chae, E.J. Bae, Y.H. Kang, W.J. Choi, S.Y. Cho, J.-O. Lee, H.K. Baik, Energy & Environmental Science, 9 (2016) 1696-1705.
[81] J. Flipse, F. Bakker, A. Slachter, F. Dejene, B. Van Wees, Nature nanotechnology, 7 (2012) 166-168.
[82] A. Bardas, D. Averin, Physical Review B, 52 (1995) 12873.
[83] J.G. McLean, B. Krishnamachari, D. Peale, E. Chason, J.P. Sethna, B. Cooper, Physical Review B, 55 (1997) 1811.
[84] M.-J. Huang, R.-H. Yen, A.-B. Wang, International Journal of Heat and Mass Transfer, 48 (2005) 413-418.
[85] M. Ohta, K. Biswas, S.H. Lo, J. He, D.Y. Chung, V.P. Dravid, M.G. Kanatzidis, Advanced Energy Materials, 2 (2012) 1117-1123.
[86] X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J. Simonson, S. Poon, T. Tritt, G. Chen, Nano letters, 11 (2010) 556-560.
[87] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, Nano letters, 8 (2008) 4670-4674.
[88] A.D. LaLonde, Y. Pei, G.J. Snyder, Energy & Environmental Science, 4 (2011) 2090-2096.
[89] Y. Zhang, T. Day, M.L. Snedaker, H. Wang, S. Krämer, C.S. Birkel, X. Ji, D. Liu, G.J. Snyder, G.D. Stucky, Advanced Materials, 24 (2012) 5065-5070.
[90] P. Rawat, B. Paul, P. Banerji, Nanotechnology, 24 (2013) 215401.
[91] Z. Li, Q. Sun, X.D. Yao, Z.H. Zhu, G.Q.M. Lu, Journal of Materials Chemistry, 22 (2012) 22821-22831.
[92] Y.-C. Li, Z.-H. Lin, ECS Transactions, 72 (2016) 67-71.
[93] K. Nielsch, J. Bachmann, J. Kimling, H. Böttner, Advanced Energy Materials, 1 (2011) 713-731.
[94] T. Zhang, S. Wu, J. Xu, R. Zheng, G. Cheng, Nano Energy, 13 (2015) 433-441.
[95] C. Alippi, R. Camplani, C. Galperti, M. Roveri, IEEE Sensors Journal, 11 (2011) 45-55.
[96] M.K. Amruta, M.T. Satish, Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), 2013 International Multi-Conference on, IEEE2013, pp. 281-285.
[97] A.H. Dehwah, M. Mousa, C.G. Claudel, Ad Hoc Networks, 28 (2015) 52-67.
[98] P.C. Dias, F.J.O. Morais, M.B. de Morais França, E.C. Ferreira, A. Cabot, J.A.S. Dias, IEEE Transactions on Instrumentation and Measurement, 64 (2015) 2918-2925.
[99] M. Olsen, E. Warren, P. Parilla, E. Toberer, C. Kennedy, G. Snyder, S. Firdosy, B. Nesmith, A. Zakutayev, A. Goodrich, Energy Procedia, 49 (2014) 1460-1469.
[100] G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z.L. Wang, Nano letters, 13 (2013) 847-853.
[101] J. Chen, G. Zhu, W. Yang, Q. Jing, P. Bai, Y. Yang, T.C. Hou, Z.L. Wang, Advanced materials, 25 (2013) 6094-6099.
[102] A. Ce-ce, S. Xiao-xia, Control and Decision Conference (CCDC), 2015 27th Chinese, IEEE2015, pp. 3335-3339.
[103] L. Lin, Y. Xie, S. Niu, S. Wang, P.-K. Yang, Z.L. Wang, ACS nano, 9 (2015) 922-930.
[104] W. Tang, T. Jiang, F.R. Fan, A.F. Yu, C. Zhang, X. Cao, Z.L. Wang, Advanced Functional Materials, 25 (2015) 3718-3725.
[105] Y. Hu, Y. Zhang, C. Xu, L. Lin, R.L. Snyder, Z.L. Wang, Nano letters, 11 (2011) 2572-2577.
[106] Z.L. Wang, Advanced Materials, 24 (2012) 280-285.
[107] M. Lee, J. Bae, J. Lee, C.-S. Lee, S. Hong, Z.L. Wang, Energy & Environmental Science, 4 (2011) 3359-3363.
[108] Z.H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai, J. Chen, Z.L. Wang, Angewandte Chemie International Edition, 52 (2013) 5065-5069.
[109] Z. Li, J. Chen, H. Guo, X. Fan, Z. Wen, M.H. Yeh, C. Yu, X. Cao, Z.L. Wang, Advanced Materials, (2016).
[110] Y. Jie, N. Wang, X. Cao, Y. Xu, T. Li, X. Zhang, Z.L. Wang, ACS nano, 9 (2015) 8376-8383.
[111] Z.-H. Lin, H.-T. Chang, Langmuir, 24 (2008) 365-367.
[112] Z.-H. Lin, Z. Yang, H.-T. Chang, Crystal Growth and Design, 8 (2007) 351-357.
[113] T.Y. Wei, H.Y. Chang, Y.F. Lee, Y.L. Hunga, C.C. Huang, Journal of the Chinese Chemical Society, 58 (2011) 732-738.
[114] T.-Y. Wei, H.-Y. Chang, C.-C. Huang, RSC Advances, 3 (2013) 13983-13989.
[115] P. Roy, Z.-H. Lin, C.-T. Liang, H.-T. Chang, Journal of hazardous materials, 243 (2012) 286-291.
[116] Y. Wang, Z. Tang, P. Podsiadlo, Y. Elkasabi, J. Lahann, N.A. Kotov, Advanced Materials, 18 (2006) 518-522.
[117] A.-M. Qin, Y.-P. Fang, C.-Y. Su, Materials Letters, 61 (2007) 126-129.
[118] M. Seyam, A. Elfalaky, Vacuum, 57 (2000) 31-41.
[119] Z. Dziuba, T. Zakrzewski, physica status solidi (b), 7 (1964) 1019-1025.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *