|
Reference [1] T.W. Clarkson, L. Magos, G.J. Myers, New England Journal of Medicine, 349 (2003) 1731-1737. [2] F. Zahir, S.J. Rizwi, S.K. Haq, R.H. Khan, Environmental toxicology and pharmacology, 20 (2005) 351-360. [3] E.M. Nolan, S.J. Lippard, Chemical reviews, 108 (2008) 3443-3480. [4] I. Onyido, A.R. Norris, E. Buncel, Chemical reviews, 104 (2004) 5911-5930. [5] P.B. Tchounwou, W.K. Ayensu, N. Ninashvili, D. Sutton, Environmental toxicology, 18 (2003) 149-175. [6] G. Aragay, J. Pons, A. Merkoçi, Chemical reviews, 111 (2011) 3433-3458. [7] C.P. Hanna, J.F. Tyson, S. McIntosh, Analytical chemistry, 65 (1993) 653-656. [8] M. Leermakers, W. Baeyens, P. Quevauviller, M. Horvat, TrAC Trends in Analytical Chemistry, 24 (2005) 383-393. [9] J.S. Lee, M.S. Han, C.A. Mirkin, Angewandte Chemie International Edition, 46 (2007) 4093-4096. [10] M.-L. Ho, K.-Y. Chen, L.-C. Wu, J.-Y. Shen, G.-H. Lee, M.-J. Ko, C.-C. Wang, J.-F. Lee, P.-T. Chou, Chemical Communications, (2008) 2438-2440. [11] H. Zhang, Y. Xia, ACS Sensors, 1 (2016) 384-391. [12] G.H. Chen, W.Y. Chen, Y.C. Yen, C.W. Wang, H.T. Chang, C.F. Chen, Anal Chem, 86 (2014) 6843-6849. [13] S. Yoon, E.W. Miller, Q. He, P.H. Do, C.J. Chang, Angewandte Chemie International Edition, 46 (2007) 6658-6661. [14] C.C. Huang, Z. Yang, K.H. Lee, H.T. Chang, Angewandte Chemie, 119 (2007) 6948-6952. [15] Z. Gu, M. Zhao, Y. Sheng, L.A. Bentolila, Y. Tang, Analytical chemistry, 83 (2011) 2324-2329. [16] T. Senapati, D. Senapati, A.K. Singh, Z. Fan, R. Kanchanapally, P.C. Ray, Chemical Communications, 47 (2011) 10326-10328. [17] Z. Zhu, Y. Su, J. Li, D. Li, J. Zhang, S. Song, Y. Zhao, G. Li, C. Fan, Analytical chemistry, 81 (2009) 7660-7666. [18] D. Wen, L. Deng, S. Guo, S. Dong, Analytical chemistry, 83 (2011) 3968-3972. [19] Z. Wang, L. Ma, Coordination Chemistry Reviews, 253 (2009) 1607-1618. [20] J. Du, B. Zhu, X. Peng, X. Chen, Small, 10 (2014) 3461-3479. [21] Y. Song, W. Wei, X. Qu, Advanced Materials, 23 (2011) 4215-4236. [22] K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Chemical reviews, 112 (2012) 2739-2779. [23] J. Du, L. Jiang, Q. Shao, X. Liu, R.S. Marks, J. Ma, X. Chen, Small, 9 (2013) 1467-1481. [24] W. Chansuvarn, T. Tuntulani, A. Imyim, TrAC Trends in Analytical Chemistry, 65 (2015) 83-96. [25] S. Botasini, G. Heijo, E. Méndez, Analytica chimica acta, 800 (2013) 1-11. [26] D. Liu, Z. Wang, X. Jiang, Nanoscale, 3 (2011) 1421-1433. [27] Y.-W. Lin, C.-C. Huang, H.-T. Chang, Analyst, 136 (2011) 863-871. [28] G. Chen, Z. Guo, G. Zeng, L. Tang, Analyst, 140 (2015) 5400-5443. [29] S.-F. Torabi, Y. Lu, Faraday discussions, 149 (2011) 125-135. [30] C.-W. Liu, C.-C. Huang, H.-T. Chang, Analytical chemistry, 81 (2009) 2383-2387. [31] D.W. Domaille, E.L. Que, C.J. Chang, Nature chemical biology, 4 (2008) 168-175. [32] X.J. Zhu, S.T. Fu, W.K. Wong, J.P. Guo, W.Y. Wong, Angewandte Chemie, 118 (2006) 3222-3226. [33] O. Del Campo, A. Carbayo, J. Cuevas, A. Munoz, G. Garcia-Herbosa, D. Moreno, E. Ballesteros, S. Basurto, T. Gómez, T. Torroba, Chemical Communications, (2008) 4576-4578. [34] S.-K. Ko, Y.-K. Yang, J. Tae, I. Shin, Journal of the American Chemical Society, 128 (2006) 14150-14155. [35] S.V. Wegner, A. Okesli, P. Chen, C. He, Journal of the American Chemical Society, 129 (2007) 3474-3475. [36] P. Chen, C. He, Journal of the American Chemical Society, 126 (2004) 728-729. [37] X. Ren, Q.-H. Xu, Langmuir, 25 (2008) 29-31. [38] K.-Y. Pu, L. Cai, B. Liu, Macromolecules, 42 (2009) 5933-5940. [39] I.-B. Kim, U.H. Bunz, Journal of the American Chemical Society, 128 (2006) 2818-2819. [40] X. Liu, Y. Tang, L. Wang, J. Zhang, S. Song, C. Fan, S. Wang, Advanced Materials, 19 (2007) 1471-1474. [41] M. Park, S. Seo, I.S. Lee, J.H. Jung, Chemical Communications, 46 (2010) 4478-4480. [42] J. Chen, Y. Gao, Z. Xu, G. Wu, Y. Chen, C. Zhu, Analytica chimica acta, 577 (2006) 77-84. [43] C.-C. Huang, H.-T. Chang, Analytical chemistry, 78 (2006) 8332-8338. [44] M. Li, Q. Wang, X. Shi, L.A. Hornak, N. Wu, Analytical chemistry, 83 (2011) 7061-7065. [45] R. Freeman, T. Finder, I. Willner, Angewandte Chemie International Edition, 48 (2009) 7818-7821. [46] A.P. Alivisatos, W. Gu, C. Larabell, Annu. Rev. Biomed. Eng., 7 (2005) 55-76. [47] W.C. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, S. Nie, Current opinion in biotechnology, 13 (2002) 40-46. [48] R. Zhang, W. Chen, Biosensors and Bioelectronics, 55 (2014) 83-90. [49] T. Hirschfeld, Applied optics, 15 (1976) 2965-2966. [50] A.K. Saha, K. Kross, E.D. Kloszewski, D.A. Upson, J.L. Toner, R.A. Snow, C.D. Black, V.C. Desai, Journal of the American Chemical Society, 115 (1993) 11032-11033. [51] S. Schlücker, Angewandte Chemie International Edition, 53 (2014) 4756-4795. [52] S. Nie, S.R. Emory, science, 275 (1997) 1102-1106. [53] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Physical review letters, 78 (1997) 1667. [54] J.P. Camden, J.A. Dieringer, J. Zhao, R.P. Van Duyne, Accounts of chemical research, 41 (2008) 1653-1661. [55] T. Kang, S.M. Yoo, I. Yoon, S. Lee, J. Choo, S.Y. Lee, B. Kim, Chemistry–A European Journal, 17 (2011) 2211-2214. [56] J. Liu, Y. Lu, Angewandte Chemie, 119 (2007) 7731-7734. [57] D. Han, S.Y. Lim, B.J. Kim, L. Piao, T.D. Chung, Chemical Communications, 46 (2010) 5587-5589. [58] G. Wang, C. Lim, L. Chen, H. Chon, J. Choo, J. Hong, Analytical and bioanalytical chemistry, 394 (2009) 1827-1832. [59] E.-O. Ganbold, J.-H. Park, K.-S. Ock, S.-W. Joo, Bulletin of the Korean Chemical Society, 32 (2011) 519-523. [60] J. Jasieniak, M. Califano, S.E. Watkins, ACS nano, 5 (2011) 5888-5902. [61] Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Nano Letters, 8 (2008) 2580-2584. [62] Y. Yang, S. Chen, Nano Letters, 3 (2003) 75-79. [63] S.-W. Hsu, C. Ngo, A.R. Tao, Nano letters, 14 (2014) 2372-2380. [64] T. Aoki, D.J. Smith, Y. Chang, J. Zhao, G. Badano, C. Grein, S. Sivananthan, Applied physics letters, 82 (2003) 2275-2277. [65] T. Zhu, M.N. Chong, Nano Energy, 12 (2015) 347-373. [66] E. Rephaeli, A. Raman, S. Fan, Nano letters, 13 (2013) 1457-1461. [67] M. Riskin, R. Tel‐Vered, I. Willner, Advanced Materials, 22 (2010) 1387-1391. [68] Q. Wang, M. Safdar, Z. Wang, J. He, Advanced Materials, 25 (2013) 3915-3921. [69] N. Ding, S.F. Chen, D.S. Geng, S.W. Chien, T. An, T. Hor, Z.L. Liu, S.H. Yu, Y. Zong, Advanced Energy Materials, 5 (2015). [70] H. Azimi, T. Ameri, H. Zhang, Y. Hou, C.O.R. Quiroz, J. Min, M. Hu, Z.G. Zhang, T. Przybilla, G.J. Matt, Advanced Energy Materials, 5 (2015). [71] J. Cao, M. Safdar, Z. Wang, J. He, Journal of Materials Chemistry A, 1 (2013) 10024-10029. [72] H.W. Liang, X. Cao, W.J. Zhang, H.T. Lin, F. Zhou, L.F. Chen, S.H. Yu, Advanced Functional Materials, 21 (2011) 3851-3858. [73] C. Dun, C.A. Hewitt, H. Huang, J. Xu, C. Zhou, W. Huang, Y. Cui, W. Zhou, Q. Jiang, D.L. Carroll, Nano Energy, 18 (2015) 306-314. [74] C. Zhou, C. Dun, Q. Wang, K. Wang, Z. Shi, D.L. Carroll, G. Liu, G. Qiao, ACS applied materials & interfaces, 7 (2015) 21015-21020. [75] E.J. Bae, Y.H. Kang, K.-S. Jang, C. Lee, S.Y. Cho, Nanoscale, 8 (2016) 10885-10890. [76] N.E. Coates, S.K. Yee, B. McCulloch, K.C. See, A. Majumdar, R.A. Segalman, J.J. Urban, Advanced Materials, 25 (2013) 1629-1633. [77] M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yang, F. Qiu, Energy & Environmental Science, 5 (2012) 8351-8358. [78] K.C. See, J.P. Feser, C.E. Chen, A. Majumdar, J.J. Urban, R.A. Segalman, Nano letters, 10 (2010) 4664-4667. [79] C. Jaworski, J. Yang, S. Mack, D. Awschalom, J. Heremans, R. Myers, Nature materials, 9 (2010) 898-903. [80] J.Y. Oh, J.H. Lee, S.W. Han, S.S. Chae, E.J. Bae, Y.H. Kang, W.J. Choi, S.Y. Cho, J.-O. Lee, H.K. Baik, Energy & Environmental Science, 9 (2016) 1696-1705. [81] J. Flipse, F. Bakker, A. Slachter, F. Dejene, B. Van Wees, Nature nanotechnology, 7 (2012) 166-168. [82] A. Bardas, D. Averin, Physical Review B, 52 (1995) 12873. [83] J.G. McLean, B. Krishnamachari, D. Peale, E. Chason, J.P. Sethna, B. Cooper, Physical Review B, 55 (1997) 1811. [84] M.-J. Huang, R.-H. Yen, A.-B. Wang, International Journal of Heat and Mass Transfer, 48 (2005) 413-418. [85] M. Ohta, K. Biswas, S.H. Lo, J. He, D.Y. Chung, V.P. Dravid, M.G. Kanatzidis, Advanced Energy Materials, 2 (2012) 1117-1123. [86] X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J. Simonson, S. Poon, T. Tritt, G. Chen, Nano letters, 11 (2010) 556-560. [87] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, Nano letters, 8 (2008) 4670-4674. [88] A.D. LaLonde, Y. Pei, G.J. Snyder, Energy & Environmental Science, 4 (2011) 2090-2096. [89] Y. Zhang, T. Day, M.L. Snedaker, H. Wang, S. Krämer, C.S. Birkel, X. Ji, D. Liu, G.J. Snyder, G.D. Stucky, Advanced Materials, 24 (2012) 5065-5070. [90] P. Rawat, B. Paul, P. Banerji, Nanotechnology, 24 (2013) 215401. [91] Z. Li, Q. Sun, X.D. Yao, Z.H. Zhu, G.Q.M. Lu, Journal of Materials Chemistry, 22 (2012) 22821-22831. [92] Y.-C. Li, Z.-H. Lin, ECS Transactions, 72 (2016) 67-71. [93] K. Nielsch, J. Bachmann, J. Kimling, H. Böttner, Advanced Energy Materials, 1 (2011) 713-731. [94] T. Zhang, S. Wu, J. Xu, R. Zheng, G. Cheng, Nano Energy, 13 (2015) 433-441. [95] C. Alippi, R. Camplani, C. Galperti, M. Roveri, IEEE Sensors Journal, 11 (2011) 45-55. [96] M.K. Amruta, M.T. Satish, Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), 2013 International Multi-Conference on, IEEE2013, pp. 281-285. [97] A.H. Dehwah, M. Mousa, C.G. Claudel, Ad Hoc Networks, 28 (2015) 52-67. [98] P.C. Dias, F.J.O. Morais, M.B. de Morais França, E.C. Ferreira, A. Cabot, J.A.S. Dias, IEEE Transactions on Instrumentation and Measurement, 64 (2015) 2918-2925. [99] M. Olsen, E. Warren, P. Parilla, E. Toberer, C. Kennedy, G. Snyder, S. Firdosy, B. Nesmith, A. Zakutayev, A. Goodrich, Energy Procedia, 49 (2014) 1460-1469. [100] G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z.L. Wang, Nano letters, 13 (2013) 847-853. [101] J. Chen, G. Zhu, W. Yang, Q. Jing, P. Bai, Y. Yang, T.C. Hou, Z.L. Wang, Advanced materials, 25 (2013) 6094-6099. [102] A. Ce-ce, S. Xiao-xia, Control and Decision Conference (CCDC), 2015 27th Chinese, IEEE2015, pp. 3335-3339. [103] L. Lin, Y. Xie, S. Niu, S. Wang, P.-K. Yang, Z.L. Wang, ACS nano, 9 (2015) 922-930. [104] W. Tang, T. Jiang, F.R. Fan, A.F. Yu, C. Zhang, X. Cao, Z.L. Wang, Advanced Functional Materials, 25 (2015) 3718-3725. [105] Y. Hu, Y. Zhang, C. Xu, L. Lin, R.L. Snyder, Z.L. Wang, Nano letters, 11 (2011) 2572-2577. [106] Z.L. Wang, Advanced Materials, 24 (2012) 280-285. [107] M. Lee, J. Bae, J. Lee, C.-S. Lee, S. Hong, Z.L. Wang, Energy & Environmental Science, 4 (2011) 3359-3363. [108] Z.H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai, J. Chen, Z.L. Wang, Angewandte Chemie International Edition, 52 (2013) 5065-5069. [109] Z. Li, J. Chen, H. Guo, X. Fan, Z. Wen, M.H. Yeh, C. Yu, X. Cao, Z.L. Wang, Advanced Materials, (2016). [110] Y. Jie, N. Wang, X. Cao, Y. Xu, T. Li, X. Zhang, Z.L. Wang, ACS nano, 9 (2015) 8376-8383. [111] Z.-H. Lin, H.-T. Chang, Langmuir, 24 (2008) 365-367. [112] Z.-H. Lin, Z. Yang, H.-T. Chang, Crystal Growth and Design, 8 (2007) 351-357. [113] T.Y. Wei, H.Y. Chang, Y.F. Lee, Y.L. Hunga, C.C. Huang, Journal of the Chinese Chemical Society, 58 (2011) 732-738. [114] T.-Y. Wei, H.-Y. Chang, C.-C. Huang, RSC Advances, 3 (2013) 13983-13989. [115] P. Roy, Z.-H. Lin, C.-T. Liang, H.-T. Chang, Journal of hazardous materials, 243 (2012) 286-291. [116] Y. Wang, Z. Tang, P. Podsiadlo, Y. Elkasabi, J. Lahann, N.A. Kotov, Advanced Materials, 18 (2006) 518-522. [117] A.-M. Qin, Y.-P. Fang, C.-Y. Su, Materials Letters, 61 (2007) 126-129. [118] M. Seyam, A. Elfalaky, Vacuum, 57 (2000) 31-41. [119] Z. Dziuba, T. Zakrzewski, physica status solidi (b), 7 (1964) 1019-1025.
|