|
1 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2015. CA: a cancer journal for clinicians 65, 5-29 (2015). 2 Fraumeni, J. F. & Schottenfeld, D. Cancer epidemiology and prevention. (Oxford University Press, 2006). 3 Chan, H. L. et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut 53, 1494-1498 (2004). 4 El-Serag , H. B. Hepatocellular Carcinoma. New England Journal of Medicine 365, 1118-1127, doi:doi:10.1056/NEJMra1001683 (2011). 5 Farazi, P. A. & DePinho, R. A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Reviews Cancer 6, 674-687 (2006). 6 (ASCO), A. S. o. C. O. Liver Cancer - Treatment Options, <http://www.cancer.net/cancer-types/liver-cancer/treatment-options> (2015). 7 Balkhi, M. Y., Ma, Q., Ahmad, S. & Junghans, R. P. T cell exhaustion and Interleukin 2 downregulation. Cytokine 71, 339-347 (2015). 8 Immunology, B. S. f. Introduction of CD8+ T cell, <http://bitesized.immunology.org/cells/cd8-t-cells/> ( 9 Health, N. I. o. Immunotherapy, (2015). 10 Oleinika, K., Nibbs, R., Graham, G. & Fraser, A. Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clinical & Experimental Immunology 171, 36-45 (2013). 11 Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology 9, 162-174 (2009). 12 Mendes, F. et al. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1865, 168-175 (2016). 13 Ohaegbulam, K. C., Assal, A., Lazar-Molnar, E., Yao, Y. & Zang, X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends in molecular medicine 21, 24-33 (2015). 14 de Coaña, Y. P., Choudhury, A. & Kiessling, R. Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends in molecular medicine 21, 482-491 (2015). 15 Karachaliou, N. et al. Understanding the function and dysfunction of the immune system in lung cancer: the role of immune checkpoints. Cancer biology & medicine 12, 79 (2015). 16 Blank, C. et al. PD-L1/B7H-1 Inhibits the Effector Phase of Tumor Rejection by T Cell Receptor (TCR) Transgenic CD8+ T Cells . Cancer Research 64, 1140-1145, doi:10.1158/0008-5472.can-03-3259 (2004). 17 Blank, C., Gajewski, T. F. & Mackensen, A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunology, Immunotherapy 54, 307-314, doi:10.1007/s00262-004-0593-x (2005). 18 Blank, C. & Mackensen, A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunology, Immunotherapy 56, 739-745, doi:10.1007/s00262-006-0272-1 (2007). 19 Fife, B. T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR–induced stop signal. Nature immunology 10, 1185-1192 (2009). 20 Rivat, C., Santilli, G., Gaspar, H. B. & Thrasher, A. J. Gene Therapy for Primary Immunodeficiencies. Human Gene Therapy 23, 668-675, doi:10.1089/hum.2012.116 (2012). 21 Tripathy, S. K., Black, H. B., Goldwasser, E. & Leiden, J. M. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med 2, 545-550 (1996). 22 Vaheri, A. & Pagano, J. S. Infectious poliovirus RNA: a sensitive method of assay. Virology 27, 434-436 (1965). 23 Sokolova, V. V., Radtke, I., Heumann, R. & Epple, M. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials 27, 3147-3153 (2006). 24 Niidome, T. & Huang, L. Gene therapy progress and prospects: nonviral vectors. Gene therapy 9, 1647-1652 (2002). 25 Lo, A., Lin, C.-T. & Wu, H.-C. Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Molecular cancer therapeutics 7, 579-589 (2008). 26 Medina, S. H. et al. Targeting Hepatic Cancer Cells with PEGylated Dendrimers Displaying N-Acetylgalactosamine and SP94 Peptide Ligands. Advanced Healthcare Materials 2, 1337-1350, doi:10.1002/adhm.201200406 (2013). 27 Ashley, C. E. et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature materials 10, 389-397 (2011). 28 Roy, I., Mitra, S., Maitra, A. & Mozumdar, S. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. International Journal of Pharmaceutics 250, 25-33 (2003). 29 Hu, J. et al. A new tool for the transfection of corneal endothelial cells: Calcium phosphate nanoparticles. Acta biomaterialia 8, 1156-1163 (2012). 30 Bisht, S., Bhakta, G., Mitra, S. & Maitra, A. pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. International journal of pharmaceutics 288, 157-168 (2005). 31 Khalil, I. A., Kogure, K., Akita, H. & Harashima, H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacological reviews 58, 32-45 (2006). 32 Li, J., Chen, Y.-C., Tseng, Y.-C., Mozumdar, S. & Huang, L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. Journal of controlled release 142, 416-421 (2010). 33 Luo, D. & Saltzman, W. M. Synthetic DNA delivery systems. Nature biotechnology 18, 33-37 (2000). 34 Maitra, A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert review of molecular diagnostics 5, 893-905 (2005). 35 Yan, J.-Y. et al. Designed nucleus penetrating thymine-capped dendrimers: a potential vehicle for intramuscular gene transfection. Journal of Materials Chemistry B 3, 9060-9066 (2015). 36 Florence, A. T. & Hussain, N. Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Advanced drug delivery reviews 50, S69-S89 (2001). 37 Esfand, R. & Tomalia, D. A. Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug discovery today 6, 427-436 (2001). 38 Gillies, E. R. & Frechet, J. M. Dendrimers and dendritic polymers in drug delivery. Drug discovery today 10, 35-43 (2005). 39 Dufès, C., Uchegbu, I. F. & Schätzlein, A. G. Dendrimers in gene delivery. Advanced drug delivery reviews 57, 2177-2202 (2005). 40 Liu, M. & Fréchet, J. M. Designing dendrimers for drug delivery. Pharmaceutical science & technology today 2, 393-401 (1999). 41 Jevprasesphant, R. et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. International journal of pharmaceutics 252, 263-266 (2003). 42 Patil, M. L. et al. Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjugate chemistry 19, 1396-1403 (2008). 43 Chen, H.-T., Neerman, M. F., Parrish, A. R. & Simanek, E. E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. Journal of the American Chemical Society 126, 10044-10048 (2004). 44 Patri, A. K., Kukowska-Latallo, J. F. & Baker, J. R. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Advanced drug delivery reviews 57, 2203-2214 (2005). 45 Sadekar, S. & Ghandehari, H. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Advanced drug delivery reviews 64, 571-588 (2012). 46 Lee, C. C., MacKay, J. A., Fréchet, J. M. & Szoka, F. C. Designing dendrimers for biological applications. Nature biotechnology 23, 1517-1526 (2005). 47 Devi, G. siRNA-based approaches in cancer therapy. Cancer gene therapy 13, 819-829 (2006). 48 Schiffelers, R. M. et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic acids research 32, e149-e149 (2004). 49 Yen, M.-C. et al. A novel cancer therapy by skin delivery of indoleamine 2, 3-dioxygenase siRNA. Clinical Cancer Research 15, 641-649 (2009). 50 Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nature reviews Drug discovery 8, 129-138 (2009). 51 Saffran, D. C. et al. Immunotherapy of established tumors in mice by intratumoral injection of interleukin-2 plasmid DNA: induction of CD8+ T-cell immunity. Cancer gene therapy 5, 321-330 (1997). 52 Stewart, A. K. et al. Adenovector-mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: results of a phase 1 clinical trial. Gene therapy 6 (1999). 53 Teo, P. Y. et al. Ovarian Cancer Immunotherapy Using PD‐L1 siRNA Targeted Delivery from Folic Acid‐Functionalized Polyethylenimine: Strategies to Enhance T Cell Killing. Advanced healthcare materials 4, 1180-1189 (2015). 54 Ghafouri-Fard, S. & Ghafouri-Fard, S. siRNA and cancer immunotherapy. (2012).
|
| |