帳號:guest(18.118.139.82)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊翎筑
作者(外文):Yang, Ling-Chu
論文名稱(中文):多功能絲素蛋白水膠系統之開發及其應用於乳癌之光熱暨化學原位治療
論文名稱(外文):Light-triggered In Situ Formation of Multifunctional Silk Fibroin Hydrogel System for Synergistic Photothermal Chemotherapy of Breast Cancer
指導教授(中文):萬德輝
指導教授(外文):Wan, Dehui
口試委員(中文):陳韻晶
張建文
口試委員(外文):Chen, Yunching
Chang, Chien-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:104038501
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:蠶絲蛋白水膠原位乳癌模型光熱治療化學藥物治療
外文關鍵詞:silk hydrogel systemin situ breast cancer modelphotothermal therapychemotherapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:57
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究中,我們開發一新穎蠶絲蛋白混摻中空金奈米粒子與艾黴素之可注射式複合水膠系統,討論其在近紅外光照射下之成膠行為、光熱效應及藥物緩釋效果,並以原位乳癌小鼠模型驗證其應用於原位光熱治療暨化學治療的可行性。目前,對於乳癌已有許多的療程,例如手術切除、化學療法或是放射線治療,但是仍然有許多問題需要克服,像是手術切除後美觀上的問題或是無法在不傷害到正常細胞的情況下殺死癌細胞。因此,我們成功開發出一個多功能可注射型的複合水膠系統,利用天然的絲素蛋白形成水膠載體,再將具有光熱現象的中空金奈米粒子與化療藥物艾黴素均勻混摻其中,希望結合光熱治療與化學藥物療法以達到抑制腫瘤的目的。首先,我們探討水膠在不同條件下的成膠行為,發現可以藉由提升水膠的溫度增進其成膠程度,並有效縮短成膠所需時間;接著研究複合水膠的光熱特性,確認可以利用近紅外光雷射誘導複合水膠產生高溫進而達到快速成膠的目的,同時藉由提升複合水膠的溫度,對於艾黴素的藥物釋放產生輔助效果。此外,也觀察到艾黴素的藥物釋放會受到環境的酸鹼值影響,在偏酸的環境下,藥物釋放量會顯著提升,此結果表示當此複合水膠系統應用在腫瘤治療上時,可利用腫瘤微環境偏酸性的特性,促進幫助藥物的釋放;然後我們利用生化分析與電子顯微影像評估複合水膠系統對於抑制乳癌細胞株生長的效果,可以看到複合水膠系統在輔以近紅外光雷射時,不僅可以藉由熱誘導癌細胞死亡外,還能成為一個連續的藥物釋放系統;最後,我們建構具有乳癌原位模型的小鼠,把複合水膠混合液直接注射在腫瘤位置,再以近紅外光雷射照射腫瘤區,可以觀察到水膠迅速於腫瘤處固化。而由於中空金奈米粒子與化療藥物已包埋在水膠中,我們觀察到奈米粒子與藥物的滯留時間接顯著延長,透過進行多次光熱治療及藥物的長期釋放,最終成功達到副作用較小的腫瘤抑制效果。因此,此多功能複合水膠系統的開發對於癌症的治療具有相當大的潛力。
The thesis describes a fabrication of an injectable light-induced hollow gold nanoparticles (HGNs) /doxorubicin (DOX) embedded silk fibroin (SF) hydrogel system, and systematic evaluations of therapy efficiency of combined photothermal-chemotherapy for breast cancer in situ. Many therapies, including surgery, chemotherapy and radiotherapy, are used to treat cancer, but most of them do not accomplish the desired purposes. For example, it is still a challenge to resolve the aesthetic problem of the patient after surgery or to efficiently kill cancer cells without hurting normal tissues. Herein, we successfully developed an injectable, multifunctional hydrogel system, by embedding HGNs and DOX into a biodegradable natural polymer, SF. We anticipated that combination of photothermal and chemotherapy can achieve the purpose of therapy of breast cancer. First, we explored the degree of sol-gel transition at different temperatures, and found that the light-induced heat would significantly accelerate the formation of SF hydrogel within a few minutes, by using a near-infrared (NIR) laser. Moreover, we also found that DOX could be released successively from the hydrogel because of the acidic environment, degradation of SF hydrogel, and heat-enhanced diffusion. Then, the photothermal and chemo cytotoxicity of multifunctional hydrogel system upon 4T1 breast cancer cells was evaluated. We observed that hydrogel system could inhibit the growth of tumor cells via the gradual release of DOX and the photothermal effect. Finally, the mixed SF solution was orthotopically injected into the mice bearing with 4T1 breast cancer and followed by laser irradiation. The light-induced heat from the HGNs would increase the local temperature and induced in situ formation of SF hydrogel through sol-gel transition. In this case, most of HGNs and DOX could be trapped well within the tumor region and thus the retention time of both agents would be significantly prolonged. Tumor-bearing mice could undergo multiple treatments and DOX would be successively released to directly, thoroughly kill the tumor cells with minor side effects for normal tissue. Thus, the development of multifunctional hydrogel systems is extremely valuable, especially for combination cancer therapy.
致謝 I
摘要 II
Abstract III
縮寫表 V
目錄 VII
圖目錄 IX
第一章 、緒論 1
1.1 研究動機 1
1.2 論文架構 2
第二章 、文獻回顧 3
2.1 癌症 3
2.1.1 乳癌 3
2.1.2 臨床上的乳癌治療方法 5
2.2 光熱治療 6
2.2.1 原理 6
2.2.2 不同的光熱粒子 9
2.2.3 金奈米粒子 12
2.2.4 靜脈注射 14
2.2.5 原位注射 16
2.3 化療藥物治療 17
2.3.1 艾黴素 17
2.3.2 腫瘤靶向奈米藥物遞送系統 19
2.3.3 水膠傳遞系統 20
2.4 絲素蛋白 22
2.4.1 絲素蛋白之簡介 22
2.4.2 絲素蛋白水膠的應用 24
第三章 、絲素蛋白水膠系統之開發及其應用於乳癌之光熱暨化學原位治療 26
3.1 研究目的 26
3.2 研究材料與方法 27
3.3 研究結果與討論 36
3.3.1 絲素蛋白水膠系統特性 36
3.3.2 中空金奈米粒子光熱性質 40
3.3.3 中空金光熱特性誘導複合水膠成膠行為之探討 42
3.3.4 複合水膠系統之降解與藥物釋放調控 44
3.3.5 細胞之光熱治療 47
3.3.6 動物實驗 52
第四章 、總結 62
參考文獻 63
著作清單 73

1. Torre, L. A.; Bray, F.; Siegel, R. L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A., Global Cancer Statistics, 2012. Ca-Cancer J Clin 2015, 65 (2), 87-108.
2. Miller, K. D.; Siegel, R. L.; Lin, C. C.; Mariotto, A. B.; Kramer, J. L.; Rowland, J. H.; Stein, K. D.; Alteri, R.; Jemal, A., Cancer treatment and survivorship statistics, 2016. Ca-Cancer J Clin 2016, 66 (4), 271-289.
3. Deng, H.; Dai, F. Y.; Ma, G. H.; Zhang, X., Theranostic Gold Nanomicelles made from Biocompatible Comb-like Polymers for Thermochemotherapy and Multifunctional Imaging with Rapid Clearance. Adv Mater 2015, 27 (24), 3645-3653.
4. Hu, Y.; Yang, Y. M.; Wang, H. J.; Du, H., Synergistic Integration of Layer-by-Layer Assembly of Photosensitizer and Gold Nanorings for Enhanced Photodynamic Therapy in the Near Infrared. Acs Nano 2015, 9 (9), 8744-8754.
5. Conde, J.; Oliva, N.; Atilano, M.; Song, H. S.; Artzi, N., Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat Mater 2016, 15 (3), 353-363.
6. Wang, Z. Z.; Chen, Z. W.; Liu, Z.; Shi, P.; Dong, K.; Ju, E. G.; Ren, J. S.; Qu, X. G., A multi-stimuli responsive gold nanocage-hyaluronic platform for targeted photothermal and chemotherapy. Biomaterials 2014, 35 (36), 9678-9688.
7. Chen, M.; Tang, S. H.; Guo, Z. D.; Wang, X. Y.; Mo, S. G.; Huang, X. Q.; Liu, G.; Zheng, N. F., Core-Shell Pd@Au Nanoplates as Theranostic Agents for In-Vivo Photoacoustic Imaging, CT Imaging, and Photothermal Therapy. Adv Mater 2014, 26 (48), 8210-8216.
8. Ward, E. M.; DeSantis, C. E.; Lin, C. C.; Kramer, J. L.; Jemal, A.; Kohler, B.; Brawley, O. W.; Gansler, T., Cancer statistics: Breast cancer in situ. Ca-Cancer J Clin 2015, 65 (6), 481-495.
9. Mahoney, M. C.; Bevers, T.; Linos, E.; Willett, W. C., Opportunities and Strategies for Breast Cancer Prevention Through Risk Reduction. Ca-Cancer J Clin 2008, 58 (6), 347-371.
10. Saslow, D.; Boetes, C.; Burke, W.; Harms, S.; Leach, M. O.; Lehman, C. D.; Morris, E.; Pisano, E.; Schnall, M.; Sener, S.; Smith, R. A.; Warner, E.; Yaffe, M.; Andrews, K. S.; Russell, C. A., American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. Ca-Cancer J Clin 2007, 57 (2), 75-89.
11. Siegel, R. L.; Miller, K. D.; Jemal, A., Cancer Statistics, 2016. Ca-Cancer J Clin 2016, 66 (1), 7-30.
12. Berry, D. A.; Cronin, K. A.; Plevritis, S. K.; Fryback, D. G.; Clarke, L.; Zelen, M.; Mandelblatt, J. S.; Yakovlev, A. Y.; Habbema, J. D. F.; Feuer, E. J.; Collaborators, C., Effect of screening and adjuvant therapy on mortality from breast cancer. New Engl J Med 2005, 353 (17), 1784-1792.
13. Runowicz, C. D.; Leach, C. R.; Henry, N. L.; Henry, K. S.; Mackey, H. T.; Cowens-Alvarado, R. L.; Cannady, R. S.; Pratt-Chapman, M. L.; Edge, S. B.; Jacobs, L. A.; Hurria, A.; Marks, L. B.; LaMonte, S. J.; Warner, E.; Lyman, G. H.; Ganz, P. A., American Cancer Society/American Society of Clinical Oncology Breast Cancer Survivorship Care Guideline. Ca-Cancer J Clin 2016, 66 (1), 44-73.
14. Jatoi, I., Options in Breast Cancer Local Therapy: Who Gets What? World J Surg 2012, 36 (7), 1498-1502.
15. Hershman, D. L.; Lacchetti, C.; Dworkin, R. H.; Smith, E. M. L.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Gavin, P.; Lavino, A.; Lustberg, M. B.; Paice, J.; Schneider, B.; Smith, M. L.; Smith, T.; Terstriep, S.; Wagner-Johnston, N.; Bak, K.; Loprinzi, C. L., Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2014, 32 (18), 1941-1967.
16. Jaque, D.; Maestro, L. M.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Rodriguez, E. M.; Sole, J. G., Nanoparticles for photothermal therapies. Nanoscale 2014, 6 (16), 9494-9530.
17. Slimen, I. B.; Najar, T.; Ghram, A.; Dabbebi, H.; Ben Mrad, M.; Abdrabbah, M., Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperther 2014, 30 (7), 513-523.
18. Thiesen, B.; Jordan, A., Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperther 2008, 24 (6), 467-474.
19. Zou, L. L.; Wang, H.; He, B.; Zeng, L. J.; Tan, T.; Cao, H. Q.; He, X. Y.; Zhang, Z. W.; Guo, S. R.; Li, Y. P., Current Approaches of Photothermal Therapy in Treating Cancer Metastasis with Nanotherapeutics. Theranostics 2016, 6 (6), 762-772.
20. Wang, A. Z.; Langer, R.; Farokhzad, O. C., Nanoparticle Delivery of Cancer Drugs. Annu Rev Med 2012, 63, 185-198.
21. Yasun, E.; Kang, H. Z.; Erdal, H.; Cansiz, S.; Ocsoy, I.; Huang, Y. F.; Tan, W. H., Cancer cell sensing and therapy using affinity tag-conjugated gold nanorods. Interface Focus 2013, 3 (3).
22. Sperling, R. A.; Rivera gil, P.; Zhang, F.; Zanella, M.; Parak, W. J., Biological applications of gold nanoparticles. Chem Soc Rev 2008, 37 (9), 1896-1908.
23. Govorov, A. O.; Richardson, H. H., Generating heat with metal nanoparticles. Nano Today 2007, 2 (1), 30-38.
24. Richardson, H. H.; Carlson, M. T.; Tandler, P. J.; Hernandez, P.; Govorov, A. O., Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions. Nano Lett 2009, 9 (3), 1139-1146.
25. Keblinski, P.; Cahill, D. G.; Bodapati, A.; Sullivan, C. R.; Taton, T. A., Limits of localized heating by electromagnetically excited nanoparticles. J Appl Phys 2006, 100 (5).
26. Garcia, J. V.; Zhang, F.; Ford, P. C., Multi-photon excitation in uncaging the small molecule bioregulator nitric oxide. Philos T R Soc A 2013, 371 (1995).
27. Weissleder, R., A clearer vision for in vivo imaging. Nat Biotechnol 2001, 19 (4), 316-317.
28. He, X. Y.; Bao, X. Y.; Cao, H. Q.; Zhang, Z. W.; Yin, Q.; Gu, W. W.; Chen, L. L.; Yu, H. J.; Li, Y. P., Tumor-Penetrating Nanotherapeutics Loading a Near-Infrared Probe Inhibit Growth and Metastasis of Breast Cancer. Adv Funct Mater 2015, 25 (19), 2831-2839.
29. An, X. N.; Zhu, A. J.; Luo, H. H.; Ke, H. T.; Chen, H. B.; Zhao, Y. L., Rational Design of Multi-Stimuli-Responsive Nanoparticles for Precise Cancer Therapy. Acs Nano 2016, 10 (6), 5947-5958.
30. Yamada, M.; Foote, M.; Prow, T. W., Therapeutic gold, silver, and platinum nanoparticles. Wires Nanomed Nanobi 2015, 7 (3), 428-445.
31. Hauck, T. S.; Jennings, T. L.; Yatsenko, T.; Kumaradas, J. C.; Chan, W. C. W., Enhancing the Toxicity of Cancer Chemotherapeutics with Gold Nanorod Hyperthermia. Adv Mater 2008, 20 (20), 3832-3838.
32. Ou, G.; Li, Z. W.; Li, D. K.; Cheng, L.; Liu, Z.; Wu, H., Photothermal therapy by using titanium oxide nanoparticles. Nano Res 2016, 9 (5), 1236-1243.
33. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z., Drug Delivery with PEGylated MoS2 Nano-sheets for Combined Photothermal and Chemotherapy of Cancer. Adv Mater 2014, 26 (21), 3433-3440.
34. Ge, J. C.; Jia, Q. Y.; Liu, W. M.; Guo, L.; Liu, Q. Y.; Lan, M. H.; Zhang, H. Y.; Meng, X. M.; Wang, P. F., Red-Emissive Carbon Dots for Fluorescent, Photoacoustic, and Thermal Theranostics in Living Mice. Adv Mater 2015, 27 (28), 4169-4177.
35. Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y. C.; Wang, Y. L.; Zhao, D. Y.; Zheng, G. F., Carbon Nanodots Featuring Efficient FRET for Real-Time Monitoring of Drug Delivery and Two-Photon Imaging. Adv Mater 2013, 25 (45), 6569-6574.
36. Zhang, H. J.; Zhu, X. L.; Ji, Y. D.; Jiao, X. J.; Chen, Q. Q.; Hou, L.; Zhang, H. L.; Zhang, Z. Z., Near-infrared-triggered in situ hybrid hydrogel system for synergistic cancer therapy. J Mater Chem B 2015, 3 (30), 6310-6326.
37. Wang, X. J.; Wang, C.; Cheng, L.; Lee, S. T.; Liu, Z., Noble Metal Coated Single-Walled Carbon Nanotubes for Applications in Surface Enhanced Raman Scattering Imaging and Photothermal Therapy. J Am Chem Soc 2012, 134 (17), 7414-7422.
38. Xie, L. S.; Wang, G. H.; Zhou, H.; Zhang, F.; Guo, Z. D.; Liu, C.; Zhang, X. Z.; Zhu, L., Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials 2016, 103, 219-228.
39. Khlebtsov, N.; Bogatyrev, V.; Dykman, L.; Khlebtsov, B.; Staroverov, S.; Shirokov, A.; Matora, L.; Khanadeev, V.; Pylaev, T.; Tsyganova, N.; Terentyuk, G., Analytical and Theranostic Applications of Gold Nanoparticles and Multifunctional Nanocomposites. Theranostics 2013, 3 (3), 167-180.
40. Zhang, X. D.; Xie, Y., Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem Soc Rev 2013, 42 (21), 8187-8199.
41. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
42. Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H., Single-Layer MoS2-Based Nanoprobes for Homogeneous Detection of Biomolecules. J Am Chem Soc 2013, 135 (16), 5998-6001.
43. Liu, Z.; Tabakman, S. M.; Chen, Z.; Dai, H. J., Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 2009, 4 (9), 1372-1382.
44. Kam, N. W. S.; Liu, Z. A.; Dai, H. J., Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angew Chem Int Edit 2006, 45 (4), 577-581.
45. Zhou, S.; Hashida, Y.; Kawakami, S.; Mihara, J.; Umeyama, T.; Imahori, H.; Murakami, T.; Yamashita, F.; Hashida, M., Preparation of immunostimulatory single-walled carbon nanotube/CpG DNA complexes and evaluation of their potential in cancer immunotherapy. Int J Pharmaceut 2014, 471 (1-2), 214-223.
46. Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V., How toxic are gold nanoparticles? The state-of-the-art. Nano Res 2015, 8 (6), 1771-1799.
47. Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N., Gold Nanomaterials at Work in Biomedicine. Chem Rev 2015, 115 (19), 10410-10488.
48. Orendorff, C. J.; Sau, T. K.; Murphy, C. J., Shape-dependent plasmon-resonant gold nanoparticles. Small 2006, 2 (5), 636-639.
49. Kennedy, L. C.; Bickford, L. R.; Lewinski, N. A.; Coughlin, A. J.; Hu, Y.; Day, E. S.; West, J. L.; Drezek, R. A., A New Era for Cancer Treatment: Gold-Nanoparticle-Mediated Thermal Therapies. Small 2011, 7 (2), 169-183.
50. Pylaev, T. E.; Khanadeev, V. A.; Khlebtsov, B. N.; Dykman, L. A.; Bogatyrev, V. A.; Khlebtsov, N. G., Colorimetric and dynamic light scattering detection of DNA sequences by using positively charged gold nanospheres: a comparative study with gold nanorods. Nanotechnology 2011, 22 (28).
51. Hao, E.; Li, S. Y.; Bailey, R. C.; Zou, S. L.; Schatz, G. C.; Hupp, J. T., Optical properties of metal nanoshells. J Phys Chem B 2004, 108 (4), 1224-1229.
52. Zhou, H. S.; Honma, I.; Komiyama, H.; Haus, J. W., Controlled Synthesis and Quantum-Size Effect in Gold-Coated Nanoparticles. Phys Rev B 1994, 50 (16), 12052-12056.
53. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. P Natl Acad Sci USA 2003, 100 (23), 13549-13554.
54. Liu, H. Y.; Chen, D.; Li, L. L.; Liu, T. L.; Tan, L. F.; Wu, X. L.; Tang, F. Q., Multifunctional Gold Nanoshells on Silica Nanorattles: A Platform for the Combination of Photothermal Therapy and Chemotherapy with Low Systemic Toxicity. Angew Chem Int Edit 2011, 50 (4), 891-895.
55. Jin, Y. D.; Jia, C. X.; Huang, S. W.; O'Donnell, M.; Gao, X. H., Multifunctional nanoparticles as coupled contrast agents. Nat Commun 2010, 1.
56. Sun, Y. G.; Mayers, B. T.; Xia, Y. N., Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2002, 2 (5), 481-485.
57. Sun, Y. G.; Xia, Y. N., Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 2002, 74 (20), 5297-5305.
58. Park, J.; Estrada, A.; Sharp, K.; Sang, K.; Schwartz, J. A.; Smith, D. K.; Coleman, C.; Payne, J. D.; Korgel, B. A.; Dunn, A. K.; Tunnell, J. W., Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt Express 2008, 16 (3), 1590-1599.
59. Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L., Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 2007, 7 (7), 1929-1934.
60. Jana, N. R.; Gearheart, L.; Murphy, C. J., Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 2001, 13 (18), 1389-1393.
61. Cole, J. R.; Mirin, N. A.; Knight, M. W.; Goodrich, G. P.; Halas, N. J., Photothermal Efficiencies of Nanoshells and Nanorods for Clinical Therapeutic Applications. J Phys Chem C 2009, 113 (28), 12090-12094.
62. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B 2006, 110 (14), 7238-7248.
63. Kobayashi, H.; Watanabe, R.; Choyke, P. L., Improving Conventional Enhanced Permeability and Retention (EPR) Effects; What Is the Appropriate Target? Theranostics 2014, 4 (1), 81-89.
64. Babu, A.; Templeton, A. K.; Munshi, A.; Ramesh, R., Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer: Progress and Challenges. J Nanomater 2013.
65. Matsumura, Y.; Maeda, H., A New Concept for Macromolecular Therapeutics in Cancer-Chemotherapy - Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res 1986, 46 (12), 6387-6392.
66. Maeda, H., The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001, 41, 189-207.
67. Noguchi, Y.; Wu, J.; Duncan, R.; Strohalm, J.; Ulbrich, K.; Akaike, T.; Maeda, H., Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 1998, 89 (3), 307-314.
68. Sykes, E. A.; Chen, J.; Zheng, G.; Chan, W. C. W., Investigating the Impact of Nanoparticle Size on Active and Passive Tumor Targeting Efficiency. Acs Nano 2014, 8 (6), 5696-5706.
69. Petros, R. A.; DeSimone, J. M., Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010, 9 (8), 615-627.
70. Wang, H. X.; Zuo, Z. Q.; Du, J. Z.; Wang, Y. C.; Sun, R.; Cao, Z. T.; Ye, X. D.; Wang, J. L.; Leong, K. W.; Wang, J., Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today 2016, 11 (2), 133-144.
71. Hama, S.; Itakura, S.; Nakai, M.; Nakayama, K.; Morimoto, S.; Suzuki, S.; Kogure, K., Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry. J Control Release 2015, 206, 67-74.
72. Harris, J. M.; Chess, R. B., Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003, 2 (3), 214-221.
73. Swierczewska, M.; Lee, K. C.; Lee, S., What is the future of PEGylated therapies? Expert Opin Emerg Dr 2015, 20 (4), 531-536.
74. Chen, B. M.; Su, Y. C.; Chang, C. J.; Burnouf, P. A.; Chuang, K. H.; Chen, C. H.; Cheng, T. L.; Chen, Y. T.; Wu, J. Y.; Roffler, S. R., Measurement of Pre-Existing IgG and IgM Antibodies against Polyethylene Glycol in Healthy Individuals. Anal Chem 2016, 88 (21), 10661-10666.
75. Wang, B.; He, X.; Zhang, Z. Y.; Zhao, Y. L.; Feng, W. Y., Metabolism of Nanomaterials in Vivo: Blood Circulation and Organ Clearance. Accounts Chem Res 2013, 46 (3), 761-769.
76. He, X. A.; Zhang, H. F.; Ma, Y. H.; Bai, W.; Zhang, Z. Y.; Lu, K.; Ding, Y. Y.; Zhao, Y. L.; Chai, Z. F., Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology 2010, 21 (28).
77. Ye, D. X.; Ma, Y. Y.; Zhao, W.; Cao, H. M.; Kong, J. L.; Xiong, H. M.; Mohwald, H., ZnO-Based Nanoplatforms for Labeling and Treatment of Mouse Tumors without Detectable Toxic Side Effects. Acs Nano 2016, 10 (4), 4294-4300.
78. Thorn, C. F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T. E.; Altman, R. B., Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genom 2011, 21 (7), 440-446.
79. Tewey, K. M.; Rowe, T. C.; Yang, L.; Halligan, B. D.; Liu, L. F., Adriamycin-Induced DNA Damage Mediated by Mammalian DNA Topoisomerase-Ii. Science 1984, 226 (4673), 466-468.
80. Doroshow, J. H., Role of Hydrogen-Peroxide and Hydroxyl Radical Formation in the Killing of Ehrlich Tumor-Cells by Anticancer Quinones. P Natl Acad Sci USA 1986, 83 (12), 4514-4518.
81. Swain, S. M.; Whaley, F. S.; Gerber, M. C.; Weisberg, S.; York, M.; Spicer, D.; Jones, S. E.; Wadler, S.; Desai, A.; Vogel, C.; Speyer, J.; Mittelman, A.; Reddy, S.; Pendergrass, K.; VelezGarcia, E.; Ewer, M. S.; Bianchine, J. R.; Gams, R. A., Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 1997, 15 (4), 1318-1332.
82. Peters, C.; Brown, S., Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Bioscience Rep 2015, 35.
83. Song, C. H.; Zhang, Y. J.; Li, C. Y.; Chen, G. C.; Kang, X. F.; Wang, Q. B., Enhanced Nanodrug Delivery to Solid Tumors Based on a Tumor Vasculature-Targeted Strategy. Adv Funct Mater 2016, 26 (23), 4192-4200.
84. Nunez, C.; Capelo, J. L.; Igrejas, G.; Alfonso, A.; Botana, L. M.; Lodeiro, C., An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials 2016, 97, 34-50.
85. Hsiao, C. W.; Chuang, E. Y.; Chen, H. L.; Wan, D. H.; Korupalli, C.; Liao, Z. X.; Chiu, Y. L.; Chia, W. T.; Lin, K. J.; Sung, H. W., Photothermal tumor ablation in mice with repeated therapy sessions using NIR-absorbing micellar hydrogels formed in situ. Biomaterials 2015, 56, 26-35.
86. Mao, L. N.; Wang, H. M.; Tan, M.; Ou, L. L.; Kong, D. L.; Yang, Z. M., Conjugation of two complementary anti-cancer drugs confers molecular hydrogels as a co-delivery system. Chem Commun 2012, 48 (3), 395-397.
87. Abou Taleb, M. F.; Alkahtani, A.; Mohamed, S. K., Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels: a drug delivery system for liver cancer. Polym Bull 2015, 72 (4), 725-742.
88. Wang, S. G.; Chen, Y.; Li, X.; Gao, W.; Zhang, L. L.; Liu, J.; Zheng, Y. Y.; Chen, H. R.; Shi, J. L., Injectable 2D MoS2-Integrated Drug Delivering Implant for Highly Efficient NIR-Triggered Synergistic Tumor Hyperthermia. Adv Mater 2015, 27 (44), 7117-7122.
89. Mottaghitalab, F.; Farokhi, M.; Shokrgozar, M. A.; Atyabi, F.; Hosseinkhani, H., Silk fibroin nanoparticle as a novel drug delivery system. J Control Release 2015, 206, 161-176.
90. Fichman, G.; Gazit, E., Self-assembly of short peptides to form hydrogels: Design of building blocks, physical properties and technological applications. Acta Biomater 2014, 10 (4), 1671-1682.
91. Lee, K. Y.; Mooney, D. J., Alginate: Properties and biomedical applications. Prog Polym Sci 2012, 37 (1), 106-126.
92. Ahmadi, F.; Oveisi, Z.; Samani, S. M.; Amoozgar, Z., Chitosan based hydrogels: characteristics and pharmaceutical applications. Research in pharmaceutical sciences 2015, 10 (1), 1.
93. Ruel-Gariepy, E.; Leroux, J.-C., In situ-forming hydrogels—review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics 2004, 58 (2), 409-426.
94. Kapoor, S.; Kundu, S. C., Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater 2016, 31, 17-32.
95. Coburn, J. M.; Na, E.; Kaplan, D. L., Modulation of vincristine and doxorubicin binding and release from silk films. J Control Release 2015, 220, 229-238.
96. Cao, Y.; Wang, B. C., Biodegradation of Silk Biomaterials. Int J Mol Sci 2009, 10 (4), 1514-1524.
97. Li, X. G.; Wu, L. Y.; Huang, M. R.; Shao, H. L.; Hu, X. C., Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers 2008, 89 (6), 497-505.
98. Matsumoto, A.; Chen, J.; Collette, A. L.; Kim, U. J.; Altman, G. H.; Cebe, P.; Kaplan, D. L., Mechanisms of silk fibroin sol-gel transitions. J Phys Chem B 2006, 110 (43), 21630-21638.
99. Hu, X.; Shmelev, K.; Sun, L.; Gil, E. S.; Park, S. H.; Cebe, P.; Kaplan, D. L., Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing. Biomacromolecules 2011, 12 (5), 1686-1696.
100. Wang, X. Q.; Kluge, J. A.; Leisk, G. G.; Kaplan, D. L., Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 2008, 29 (8), 1054-1064.
101. Lawrence, B. D.; Wharram, S.; Kluge, J. A.; Leisk, G. G.; Omenetto, F. G.; Rosenblatt, M. I.; Kaplan, D. L., Effect of Hydration on Silk Film Material Properties. Macromol Biosci 2010, 10 (4), 393-403.
102. You, R. C.; Xu, Y. M.; Liu, Y.; Li, X. F.; Li, M. Z., Comparison of the in vitro and in vivo degradations of silk fibroin scaffolds from mulberry and nonmulberry silkworms. Biomed Mater 2015, 10 (1).
103. Rockwood, D. N.; Preda, R. C.; Yucel, T.; Wang, X. Q.; Lovett, M. L.; Kaplan, D. L., Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 2011, 6 (10), 1612-1631.
104. Tao, H.; Kaplan, D. L.; Omenetto, F. G., Silk Materials - A Road to Sustainable High Technology. Adv Mater 2012, 24 (21), 2824-2837.
105. Song, D. W.; Kim, S. H.; Kim, H. H.; Lee, K. H.; Ki, C. S.; Park, Y. H., Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: Implications for wound healing. Acta Biomater 2016, 39, 146-155.
106. Kojic, N.; Pritchard, E. M.; Tao, H.; Brenckle, M. A.; Mondia, J. P.; Panilaitis, B.; Omenetto, F.; Kaplan, D. L., Focal Infection Treatment using Laser-Mediated Heating of Injectable Silk Hydrogels with Gold Nanoparticles. Adv Funct Mater 2012, 22 (18), 3793-3798.
107. Wu, H. C.; Liu, S. S.; Xiao, L. Y.; Dong, X. D.; Lu, Q.; Kaplan, D. L., Injectable and pH-Responsive Silk Nanofiber Hydrogels for Sustained Anticancer Drug Delivery. Acs Appl Mater Inter 2016, 8 (27), 17118-17126.
108. Li, X. F.; You, R. C.; Luo, Z. W.; Chen, G.; Li, M. Z., Silk fibroin scaffolds with a micro-/nano-fibrous architecture for dermal regeneration. J Mater Chem B 2016, 4 (17), 2903-2912.
109. Yan, S. Q.; Zhang, Q.; Wang, J. N.; Liu, Y.; Lu, S. Z.; Li, M. Z.; Kaplan, D. L., Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomater 2013, 9 (6), 6771-6782.
110. Paulusse, J. M. J.; Sijbesma, R. P., Ultrasound in polymer chemistry: Revival of an established technique. J Polym Sci Pol Chem 2006, 44 (19), 5445-5453.
111. Monti, P.; Freddi, G.; Sampaio, S.; Tsukada, M.; Taddei, P., Structure modifications induced in silk fibroin by enzymatic treatments. A Raman study. J Mol Struct 2005, 744, 685-690.
112. Wilson, D.; Valluzzi, R.; Kaplan, D., Conformational transitions in model silk peptides. Biophys J 2000, 78 (5), 2690-2701.
113. Martel, A.; Burghammer, M.; Davies, R. J.; Di Cola, E.; Vendrely, C.; Riekel, C., Silk Fiber Assembly Studied by Synchrotron Radiation SAXS/WAXS and Raman Spectroscopy. J Am Chem Soc 2008, 130 (50), 17070-17074.
114. Huang, H. C.; Rege, K.; Heys, J. J., Spatiotemporal Temperature Distribution and Cancer Cell Death in Response to Extracellular Hyperthermia Induced by Gold Nanorods. Acs Nano 2010, 4 (5), 2892-2900.
115. Parker, S. T.; Domachuk, P.; Amsden, J.; Bressner, J.; Lewis, J. A.; Kaplan, D. L.; Omenetto, F. G., Biocompatible Silk Printed Optical Waveguides. Adv Mater 2009, 21 (23), 2411-2415.
116. Coburn, J. M.; Kaplan, D. L., Engineering Biomaterial-Drug Conjugates for Local and Sustained Chemotherapeutic Delivery. Bioconjugate Chem 2015, 26 (7), 1212-1223.
117. Seib, F. P.; Jones, G. T.; Rnjak-Kovacina, J.; Lin, Y. N.; Kaplan, D. L., pH-Dependent Anticancer Drug Release from Silk Nanoparticles. Adv Healthc Mater 2013, 2 (12), 1606-1611.
118. Seib, F. P.; Coburn, J.; Konrad, I.; Klebanov, N.; Jones, G. T.; Blackwood, B.; Charest, A.; Kaplan, D. L.; Chiu, B., Focal therapy of neuroblastoma using silk films to deliver kinase and chemotherapeutic agents in vivo. Acta Biomater 2015, 20, 32-38.
119. Voet, D.; Voet, J. G. P.; Charlotte, W.; Judith, G. V.; Charlotte, W. P., Fundamentals of biochemistry: life at the molecular level. 2013.
120. Han, H. Y.; Ning, H. Y.; Liu, S. S.; Lu, Q.; Fan, Z. H.; Lu, H. J.; Lu, G. Z.; Kaplan, D. L., Silk Biomaterials with Vascularization Capacity. Adv Funct Mater 2016, 26 (3), 421-432.
121. Estrella, V.; Chen, T. A.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H. H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J. M.; Sloane, B. F.; Johnson, J.; Gatenby, R. A.; Gillies, R. J., Acidity Generated by the Tumor Microenvironment Drives Local Invasion. Cancer Res 2013, 73 (5), 1524-1535.
122. Ren, Y.; Wang, R. R.; Liu, Y.; Guo, H.; Zhou, X.; Yuan, X. B.; Liu, C. Y.; Tian, J. G.; Yin, H. F.; Wang, Y. S.; Zhang, N., A hematoporphyrin-based delivery system for drug resistance reversal and tumor ablation. Biomaterials 2014, 35 (8), 2462-2470.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具增強腫瘤組織滲透與細胞吞噬之智慧型表面電荷轉換奈米給藥傳輸系統應用於影像導引之光熱及化學複合式腫瘤治療
2. 光應答性金屬奈米粒子應用於治療多重抗藥性腫瘤
3. 利用羥基磷灰石/中孔矽殼包覆之奈米粒子調控鈣離子流入粒線體藉以提升光熱/化學合併治療
4. 三陰性乳癌的新療法策略開發-複合光熱、化療藥物誘導免疫原性細胞死亡以及乳酸氧化酶調節腫瘤微環境免疫系統介導免疫治療的三合一溫感型水膠的製備與應用
5. 製備新穎多孔洞金奈米框暨其生物毒性之研究
6. 蠶絲蛋白 /金屬奈米粒子複合材料在生醫及光電之應用
7. 功能性奈米粒子陣列應用於醫材抗菌塗層與食安快篩試片之研究
8. 利用單層奈米粒子陣列開發低成本生醫感測平台及臨床快速診斷之應用
9. 以奈米壓印技術製備低成本紙基感測器及其在食品安全與重金屬檢測之應用
10. 探討基材誘發金屬奈米粒子之近場電漿行為及其於表面增益拉曼散射之應用
11. 利用多功能報導系統達成胞外泌體之分子影像
12. 軟質化學感測器之製程開發及其應用
13. 軟性複合材料光學特性及其應用在臨床快篩與輻射冷卻之研究
14. 以奈米複合水膠系統作為一氧化氮緩釋載體 並結合光熱療法應用於乳癌新穎治療策略
15. 開發結合催化及光熱能力之複合水膠系統 以應用於乳癌合併治療策略
 
* *